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Research at the University of Latvia in statistics

1 Nonparametric statistical procedures (Students - S.Vucāne,
M.Vēliņa, L.Pahirko, E.Cers)

Empirical likelihood method;
Smooth nonparametric regression estimation;
Smooth nonparmetric density estimation;
Bootstrap methods.

2 Other research in mathematical statistics
Empirical process theory (J. Cielēns);
Goodness-of-fit tests for dependent data (A. Ločmelis);
Long memory processes (I. Dasmane);
Change-point analysis (A. Vaselāns).

Valeinis Recent trends in robust statistics p. 2 of 21



Why robust statistics?

1 Collaboration with Prof.dr. George Lutta from the University
of Georgetown.

2 Recent research activities in nonparametric robust statistical
methods.

3 Valeinis, Velina and Lutta (2011). Empirical likelihood-based
inference for the difference of smoothed Huber estimators. An
abstract in International Conference on Robust Statistics
(ICORS) in Valladolid, Spain.

Thanks to MMA conference in 2009 and publication:

J.Valeinis, E.Cers, J.Cielēns (2010). Two-sample problems in
statistical data modelling. Mathematical modelling and analysis,
15(1), 137-151.
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What is robust statistics?

Definition
Robust statistics provides an alternative approach to classical
statistical methods. The motivation is to produce estimators that
are not unduly affected by small departures from model
assumptions (e.g. of normality)

Classical statistical procedures are typically sensitive to
"longtailedness" and "outliers"
Goal: to obtain distributionally robust (or outlier-resistant)
procedures.
Foundators: John Tuckey (1960, 1962), Peter Huber (1964,
1967) and Frank Hampel (1971, 1974)

Valeinis Recent trends in robust statistics p. 4 of 21



Data example: copper content in wholemeal flour

Table: Data example: copper content in wholemeal flour (Analytical
Methods Committee, 1989)

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90
3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50
3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

The value 28.95 - an outlier!?
with outlier without outlier

Med(X) 3.38 3.37
X̄ 4.28 3.21
S 5.30 0.69

t-test CI (2.05, 6.51) (2.91, 3.51)

Problem: A single outlier has an unbounded influence on
statistics X̄ and S (not on the sample median).

Valeinis Recent trends in robust statistics p. 5 of 21



Data example: copper content in wholemeal flour

Sample mean X̄ is not a robust location estimate.
Sample median Med(X ) is a robust location estimate!
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Data example: copper content in wholemeal flour

Why not just delete the outlier?

Kandel (1991): "The discovery of the ozone hole was announced in 1985 by a
British team working on the ground with "conventional" instruments and
examining its observations in detail. Only later, after reexamining the data
transmitted by the TOMS instrument on NASA’s Nimbus 7 satellite, was it
found that the hole had been forming for several years. Why had nobody
noticed it?

The reason was simple: the systems processing the TOMS data, designed in
accordance with predictions derived from models, which in turn were
established on the basis of what was thought to be "reasonable", had rejected
the very ("excessively") low values observed above the Antarctic during the
Southern spring. As far as the program was concerned, there must have been
an operating defect in the instrumemt"!
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M-estimates of location: motivation

Definition
The location model

Xi = µ+ Ui ,

where U1, . . . ,Un are iid with U1 ∼ F0.

X1, . . . ,Xn are iid with F (x) = F0(x − µ).
The likelihood function

L(X1, . . . ,Xn;µ) =
n∏

i=1
f0(Xi − µ).

Estimate of µ:

µ̂ = argmax
µ

L(X1, . . . ,Xn;µ),
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M-estimates of location: motivation

Definition
Equivalently an estimate of µ with ρ = − log f0.

µ̂ = argmin
µ

n∑
i=1

ρ(Xi − µ),

If F0 = N(0, 1), then ρ(x) = x2/2 and

µ̂ = argmin
µ

n∑
i=1

(Xi − µ)2.

If F0 is the double exponential distribution, then ρ(x) = |x |
and

µ̂ = argmin
µ

n∑
i=1
|Xi − µ|.
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M-estimates of location

Definition
Given a function ρ, an M-estimate of location is a solution of

µ̂ = argmin
µ

n∑
i=1

ρ(Xi − µ).

or equivalently if ρ is differentiable, then
n∑

i=1
ψ(Xi − µ̂) = 0.
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M-estimates of location

Definition
Huber’s (1964) ρ and ψ functions

ρk(x) =

{
x2 if |x | ≤ k

2k|x | − k2 if |x | > k,

ψk(x) =

{
x if |x | ≤ k

sgn(x)k if |x | > k,

If k →∞ we obtain the sample mean;
If k → 0 we obtain the sample median;
For Normal distribution standard choice is k = 1.28 (0.9th
quantile of N(0, 1)).
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Other robust estimates of location and scale

Definition
Median absolute deviation (MAD) about the median estimator of
the scale

MAD(X) = MAD(X1,X2, . . . ,Xn) = Med{|X−Med(X)|}.

Normalized MAD

MADN(X) =
MAD(X)

0.6745 .

Definition
Simultaneous M-estimate of location and dispersion

n∑
i=1

ψ

(Xi − µ̂
σ̂

)
= 0.
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Data example: copper content in wholemeal flour

Table: Data example: copper content in wholemeal flour

with outlier without outlier
X̄ 4.28 3.21

Med(X ) 3.38 3.37
HuberM 3.22 3.19

S 5.30 0.69
MADN 0.53 0.50
t-test CI (2.05, 6.51) (2.91, 3.51)

Why not always use Med(X ) and MADN(X )?
Answer - if there are no outliers these statistics have poorer
behavior than usual ones.
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Measuring robustness

Definition
The sensitivity curve of the estimate µ̂ for the sample
X1,X2, . . . ,Xn is the difference

µ̂(X1,X2, . . . ,Xn, x0)− µ̂(X1,X2, . . . ,Xn)

as a function of the location x0 of the outlier.

Sensitivity curves show how any statistic is affected by an
additional observation having value x0.
For robust statistics it should be bounded!
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Sensitivity curves of location estimates

Figure: Artificial data set: simulated data with n = 20 from N(0, 1).
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Sensitivity curves of dispersion estimates

Figure: Artificial data set: simulated data with n = 20 from N(0, 1)
(MD = E(|X − EX |), IQR - interquartile range).
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Influence functions

Definition
For a statistical functional T (F ) when a sample contains a small
fraction ε of identical outliers Influence function is defined as

IF (x0) = lim
ε↓0

T ((1− ε)F + εδx0)− T (F )

ε

T (F ) is said to have infinitesimal robustness if IF is bounded.
The influence function (IF) is an asymptotic version of its
sensitivity curve.
For location M-estimate

IF (x0) =
ψ(x0 − µ̂)

Eψ′(x0 − µ̂)
.
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Contaminated models F = (1− ε)G + εH

Location model Xi = µ+ Ui , where Ui ∼ N(0, σ2)
1 X̄ ∼ N(µ, σ2/n).
2 Med(X ) ∼ N(µ, 1.57σ2/n).

The median has a 57% increase in variance relative to sample
mean. It has a low efficiency at the normal distribution.

For heavy tailed distributions characterized by contamination,
the median will have high efficiency at the normal distribution.

F = (1− ε)N(µ, 1) + εN(µ, τ2)

Var(X̄ ) =
1− ε+ ετ2

n , Var(Med(X )) =
π

2n(1− ε+ ε/τ)2 .
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Contaminated models F = (1− ε)N(µ, 1) + εN(µ, τ 2)

Table: variances (×n) of mean and median for large n.

Tradeoff between robustness and efficiency!
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Robust regression

Definition
Parametric linear regression M-estimate β̂ is the solution to

n∑
i=1

ψ

(
Yi − Ŷi (β̂)

σ̂

)
Xi = 0.

Definition
Nonparametric regression M-estimate m̂ is the solution to

n∑
i=1

K
(x − Xi

h

)
ψ(Yi − m̂(x)) = 0.
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Recent results

1 Empirical likelihood and robust statistics
F. Hampel et al. (2011). A smoothing principle for the Huber and
other location M-estimators. Computational Statistics and Data
Analysis, 55(1), pages 324-337.

J. Valeinis, M. Velina and G. Lutta (2011). Empirical
likelihood-based inference for the difference of smoothed Huber
estimators. ICORS conference abstract.

2 Nonparametric regression and robust statistics
G. Boente et al. (2010). On a robust local estimator for the scale
function in heteroscedastic nonparametric regression. Statistics &
Probability Letters, 80(15-16), pages 1185–1195.

H. Dette and M. Marchlewski (2010). A robust test for
homoscedasticity in nonparametric regression. Journal of
Nonparametric Statistics, 22(6), pages 723–736.
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