

IEGULDİJUMS TAVĀ NĀKOTNĒ

Bartlett correction for the empirical likelihood method for the two-sample mean problem

S. Vucāne ${ }^{1}$

${ }^{1}$ University of Latvia, Riga
$28^{\text {th }}$ of May, 2011

Initial goal

Establish Bartlett correction for the empirical likelihood for the general two-sample problem

- mean difference
- quantile function difference
- probability-probability plots
- quantile-quantile plots
- ROC curves
- structural relationship models

Empirical likelihood method

Empirical likelihood method is the only nonparametric method that admits Bartlett adjustment and it was introduced by Art B. Owen in 1988.

$$
L(F)=\prod_{i=1}^{n} P\left(X=X_{i}\right)=\prod_{i=1}^{n} p_{i}
$$

Empirical likelihood (EL) for μ

- X_{1}, \ldots, X_{n} iid with $E X_{i}=\mu_{0} \in \mathbb{R}$.
- $g(X, \mu)$ such that $E\{g(X, \mu)\}=0\left(g\left(X_{i}, \mu\right)=X_{i}-\mu\right)$;
- Empirical likelihood for μ :

$$
L(\mu)=\prod_{i=1}^{n} P\left(X=X_{i}\right)=\prod_{i=1}^{n} p_{i}
$$

- $L(\mu)$ is maximized subject to constraints:

$$
p_{i} \geq 0, \sum_{i} p_{i}=1, \sum_{i} p_{i} g\left(X_{i}, \mu\right)=0
$$

Empirical likelihood (EL) for μ

- Empirical likelihood ratio statistic for μ

$$
R(\mu)=\frac{L(\mu)}{L(\hat{\mu})}=\prod_{i=1}^{n}\left\{1+\lambda(\mu) g\left(X_{i}, \mu\right)\right\}^{-1},
$$

Theorem (Owen, 1988)

X_{1}, \ldots, X_{n} i.i.d. with $\mu_{0}<\infty$. Then

$$
W\left(\mu_{0}\right)=-2 \log R\left(\mu_{0}\right) \rightarrow_{d} \chi_{1}^{2} .
$$

Simulation study

$\mathrm{N}(0,1)$					
	t test	$B_{\text {perc }}$	$B_{\text {norm }}$	$B_{\text {basic }}$	$E L$
$n=20$	0.954	0.934	0.927	0.928	0.939
$n=50$	0.959	0.950	0.950	0.950	0.945
$n=100$	0.960	0.957	0.954	0.956	0.949
χ_{1}^{2}					
$n=20$	0.908	0.904	0.894	0.875	0.912
$n=50$	0.931	0.930	0.923	0.916	0.933
$n=100$	0.943	0.944	0.941	0.929	0.943

Development of Bartlett correction in one sample case

- Mean - Hall and LaScala (1990)
- Smooth function of mean - DiCiccio, Hall and Romano (1991)
- Quantiles - Chen un Hall (1993)
- Linear regression - Chen $(1993,1994)$
- Nuisance parameters - Chen and Cui (1999)

Bartlett correction

Bartlett correction

Simple correction of $W\left(\mu_{0}\right)$ with its mean $\mathbb{E}\left\{W\left(\mu_{0}\right)\right\}$ reduces coverage error from $O\left(n^{-1}\right)$ to $O\left(n^{-2}\right)$.

Edgeworth series

Approximate a probability distribution in terms of its cumulants.

- X_{1}, \ldots, X_{n} i.i.d. with mean θ_{0} and finite variance σ^{2}.
- $S_{n}=n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) / \sigma$, where $\hat{\theta}=\bar{X}$.

Edgeworth expansion for S_{n}

$\mathbb{P}\left(S_{n} \leq x\right)=\Phi(x)+n^{-1 / 2} p_{1}(x) \phi(x)+n^{-1} p_{2}(x) \phi(x)+\ldots$.

Derivation of Bartlett correction for the mean

Notation: $\alpha_{k}=\mathbb{E}\left(X^{k}\right)$ un $A_{k}=n^{-1} \sum_{i} X_{i}^{k}-\alpha_{k}$.

1. Solving $n^{-1} \sum_{i}\left(X_{i}-\mu\right)\left\{1+\lambda\left(X_{i}-\mu\right)\right\}^{-1}=0$ obtain expansion for λ :

$$
\begin{aligned}
\lambda= & A_{1}+\alpha_{3} A_{1}^{2}-A_{1} A_{2}+A_{1} A_{2}^{2}+A_{1}^{2} A_{3}+2 \alpha_{3}^{2} A_{1}^{3}-3 \alpha_{3} A_{1}^{2} A_{2} \\
& -\alpha_{4} A_{1}^{3}+O_{p}\left(n^{-2}\right) .
\end{aligned}
$$

2. Obtain expansion of $n^{-1} W_{0}$:

$$
\begin{aligned}
n^{-1} W_{0}= & A_{1}^{2}-A_{2} A_{1}^{2}+\frac{2}{3} \alpha_{3} A_{1}^{3}+A_{2}^{2} A_{1}^{2}+\frac{2}{3} A_{3} A_{1}^{3}-2 \alpha_{3} A_{2} A_{1}^{3} \\
& +\alpha_{3}^{2} A_{1}^{4}-\frac{1}{2} \alpha_{4} A_{1}^{4}+O_{p}\left(n^{-5 / 2}\right) .
\end{aligned}
$$

Derivation of Bartlett correction for the mean

3. Derive signed root of $n^{-1} W_{0}$.

$$
\begin{aligned}
n^{-1} W_{0} & =R^{2}+O_{p}\left(n^{-5 / 2}\right), R=R_{1}+R_{2}+R_{3}+O_{p}\left(n^{-2}\right) \text { and } \\
R_{1} & =A_{1}, R_{2}=-\frac{1}{2} A_{2} A_{1}+\frac{1}{3} \alpha_{3} A_{1}^{2}, \\
R_{3} & =\frac{3}{8} A_{2}^{2} A_{1}+\frac{1}{3} A_{3} A_{1}^{2}-\frac{5}{6} \alpha_{3} A_{2} A_{1}^{2}+\frac{4}{9} \alpha_{3}^{2} A_{1}^{3}-\frac{1}{4} \alpha_{4} A_{1}^{3} .
\end{aligned}
$$

4. Derive moments and cumulants of

$$
n^{-1} W_{0}=R_{1}^{2}+2 R_{1} R_{2}+2 R_{1} R_{3}+R_{2}^{2}+O_{p}\left(n^{-5 / 2}\right)
$$

Johnson and Kotz showed, that s th cumulant of $n R^{2}$ is

$$
\kappa_{s}=2^{s-1}(s-1)!\left\{\mathbb{E}\left(n R^{2}\right)\right\}^{s}+O\left(n^{-3 / 2}\right)
$$

And s th cumulant of $\left(n R^{2}\right)\left\{\mathbb{E}\left(n R^{2}\right)\right\}^{-1}$ is $2^{s-1}(s-1)$!, whitch is also s-th cumulant of χ_{1}^{2}.

Derivation of Bartlett correction for the mean

5. $\mathbb{P}\left[W_{0}\left\{\mathbb{E}\left(n R^{2}\right)\right\}^{-1} \leq z\right]=\mathbb{P}\left(\chi_{1}^{2} \leq z\right)+O\left(n^{-2}\right)$.

$$
\begin{aligned}
\mathbb{E}\left(n R^{2}\right) & =n\left\{\mathbb{E}\left(R_{1}^{2}\right)+2 \mathbb{E}\left(R_{1} R_{2}\right)+2 \mathbb{E}\left(R_{1} R_{3}\right)+\mathbb{E}\left(R_{2}^{2}\right)\right\}+O\left(n^{-2}\right) \\
& =1+n^{-1}\left(-\frac{1}{3} \alpha_{3}^{2}+\frac{1}{2} \alpha_{4}\right)+O\left(n^{-2}\right)
\end{aligned}
$$

6. If EL confidence interval for μ is defined as

$$
I_{\alpha}=\left\{\mu: W(\mu) \leq c_{\alpha}\right\}
$$

where c_{α} is such that $\mathbb{P}\left(\chi_{1}^{2} \leq c_{\alpha}\right)=1-\alpha$, then EL confidence interval with Bartlett adjustment can be defined

$$
I_{\alpha}^{\prime}=\left\{\mu: W(\mu) \leq c_{\alpha}\left(1+n^{-1} a\right)\right\}
$$

Simulation study

		$N(0,1)$			χ_{1}^{2}
$n=10$	$E L$	0.8975	$n=10$	$E L$	0.8329
	$E L_{B_{\text {theo }}}$	0.9162		$E L_{B_{\text {theo }}}$	0.8826
	$E L_{B_{\text {est }}}$	0.9118		$E L_{B_{e s t}}$	0.8480
$n=20$	$E L$	0.9334	$n=20$	$E L$	0.8925
	$E L_{B_{\text {theo }}}$	0.9420		$E L_{B_{\text {theo }}}$	0.9198
	$E L_{B_{\text {est }}}$	0.9410		$E L_{B_{\text {est }}}$	0.9042
$n=50$	$E L$	0.9456	$n=50$	$E L$	0.9265
	$E L_{B_{\text {theo }}}$	0.9486		$E L_{B_{\text {theo }}}$	0.9387
	$E L_{B_{\text {est }}}$	0.9482		$E L_{B_{\text {est }}}$	0.9328

Empirical likelihood for two sample case

- $X_{1}, \ldots, X_{n_{1}}$ are i.i.d. from F_{1} and $Y_{1}, \ldots, Y_{n_{2}}$ are i.i.d. from F_{2}
- $\theta_{0}, \Delta_{0} \Longleftrightarrow w_{1}\left(X_{i}, \theta_{0}, \Delta_{0}, t\right), w_{2}\left(Y_{j}, \theta_{0}, \Delta_{0}, t\right)$
- For mean difference:

$$
\begin{aligned}
\theta_{0} & =\int X d F_{1}(x), \Delta_{0}=\int Y d F_{2}(y)-\int X d F_{1}(x) \\
w_{1} & =X-\theta_{0}, w_{2}=Y-\theta_{0}-\Delta_{0}
\end{aligned}
$$

- $\mathbb{E}_{F_{1}} w_{1}\left(X, \theta_{0}, \Delta_{0}, t\right)=0$ and $\mathbb{E}_{F_{2}} w_{2}\left(Y, \theta_{0}, \Delta_{0}, t\right)=0$.

Empirical likelihood for two sample case

- Empirical likelihood ratio is defined as

$$
R(\Delta, \theta)=\sup _{\theta, p, q} \prod_{i=1}^{n_{1}}\left(n_{1} p_{i}\right) \prod_{j=1}^{n_{2}}\left(n_{2} q_{j}\right)
$$

- Empirical loglikelihood ratio is defined as

$$
\begin{aligned}
W(\Delta, \theta)= & -2 \log R(\Delta, \theta)=2 \sum_{i=1}^{n_{1}} \log \left(1+\lambda_{1}(\theta) w_{1}\left(X_{i}, \theta, \Delta, t\right)\right) \\
& +2 \sum_{j=1}^{n_{2}} \log \left(1+\lambda_{2}(\theta) w_{2}\left(Y_{j}, \theta, \Delta, t\right)\right)
\end{aligned}
$$

Under certain conditions

$$
-2 \log R\left(\Delta_{0}, \hat{\theta}\right) \rightarrow_{d} \chi_{1}^{2}
$$

Development of Bartlett correction in two sample case

Jing (1995)

Obtained Bartlett correction for EL for two sample mean difference.

Liu, Zou and Zhang (2008)

Corrected mistake made by Jing and obtained correct version of Bartlett correction for EL for two sample mean difference.

Liu un Yu (2010)

Obtained Bartlett correction for adjusted EL for two sample mean difference.

Bartlett correction for two sample mean difference

> Jing (1995) obtained $n^{-1} W$ as
> $n^{-1} W=\Delta_{1}+O_{p}\left(n^{-5 / 2}\right)$.

Liu, Zou un Zhang (2008) obtained $n^{-1} W$ as
$n^{-1} W=\Delta_{1}+\Delta_{2}^{*}+O_{p}\left(n^{-5 / 2}\right)$.

During additional analysis is was obtained, that Δ_{2}^{*} should be replaced by Δ_{2}, where $\Delta_{2}=\Delta_{2}^{*}+\delta$.

Simulation study for mean difference of $\exp (1)$ and $\exp (2)$

		$n_{2}=10$	$n_{2}=20$	$n_{2}=30$
$n_{1}=10$	$E L$	0.8862	0.8803	0.8757
	$E L_{B_{\text {theo }}}$	0.9186	0.9134	0.9167
	$E L_{B_{\text {est }}}$	0.9015	0.8962	0.8946
$n_{1}=20$	$E L$	0.9170	0.9163	0.9201
	$E L_{B_{\text {theo }}}$	0.9379	0.9378	0.9343
	$E L_{B_{\text {est }}}$	0.9305	0.9257	0.9280
$n_{1}=30$	$E L$	0.9200	0.9261	0.9289
	$E L_{B_{\text {theo }}}$	0.9389	0.9396	0.9430
	$E L_{B_{\text {est }}}$	0.9339	0.9378	0.9374

Simulation study for mean difference of χ_{3}^{2} and $\exp (1)$

		$n_{2}=10$	$n_{2}=20$	$n_{2}=30$
$n_{1}=10$	$E L$	0.8877	0.9210	0.9284
	$E L_{B_{\text {theo }}}$	0.9183	0.9364	0.9412
	$E L_{B_{\text {est }}}$	0.9057	0.9352	0.9374
$n_{1}=20$	$E L$	0.8915	0.9213	0.9313
	$E L_{B_{\text {theo }}}$	0.9162	0.9358	0.9425
	$E L_{B_{\text {est }}}$	0.9056	0.9318	0.9403
$n_{1}=30$	$E L$	0.8838	0.9251	0.9342
	$E L_{B_{\text {theo }}}$	0.9119	0.9355	0.9427
	$E L_{B_{\text {est }}}$	0.9007	0.9286	0.9379

Achieved result in the establishment of Bartlett correction for EL for the general two-sample problem

$$
\begin{aligned}
W & =2 \tilde{v}_{1} \bar{w}_{12}^{-1} \bar{w}_{11}+\left(2 \tilde{v}_{1} \bar{w}_{13} \bar{w}_{12}^{-3}-\tilde{v}_{2} \bar{w}_{12}^{-2}\right) \bar{w}_{11}^{2} \\
& +\left(\frac{2}{3} \tilde{v}_{3} \bar{w}_{12}^{-3}-2 \tilde{v}_{2} \bar{w}_{13} \bar{w}_{12}^{-4}-2 \tilde{v}_{1} \bar{w}_{14} \bar{w}_{12}^{-4}+4 \tilde{v}_{1} \bar{w}_{13}^{2} \bar{w}_{12}^{-5}\right) \bar{w}_{11}^{3} \\
& +\left(2 \tilde{v}_{3} \bar{w}_{12}^{-5} \bar{w}_{13}-\frac{1}{2} \tilde{v}_{4} \bar{w}_{12}^{-4}+2 \tilde{v}_{2} \bar{w}_{14} \bar{w}_{12}^{-5}-5 \tilde{v}_{2} \bar{w}_{13}^{2} \bar{w}_{12}^{-6}\right) \bar{w}_{11}^{4} \\
& +\left(\frac{2}{5} \tilde{v}_{5} \bar{w}_{12}^{-5}+2 \tilde{v}_{2} \bar{w}_{13} \bar{w}_{14} \bar{w}_{12}^{-7}-2 \tilde{v}_{3} \bar{w}_{14} \bar{w}_{12}^{-6}+6 \tilde{v}_{3} \bar{w}_{13}^{2} \bar{w}_{12}^{-7}\right) \bar{w}_{11}^{5} \\
& -\left(4 \tilde{v}_{2} \bar{w}_{13}^{3} \bar{w}_{12}^{-8}+2 \tilde{v}_{4} \bar{w}_{13} \bar{w}_{12}^{-6}\right) \bar{w}_{11}^{5}+\sum_{k=5}^{j} R_{2 k} \bar{w}_{11}^{k+1} \\
& +\left(o_{p}(b)+O_{p}\left(\delta+l^{-1 / 2}\right)\right)^{j+2},
\end{aligned}
$$

where $\tilde{v}_{k}=n_{1} \bar{w}_{1 k}+n_{2} c^{k} \bar{w}_{2 k}, \bar{w}_{1 k}=n_{1}^{-1} \sum_{i=1}^{n_{1}} w_{1}^{k}$ and $\bar{w}_{2 k}=n_{2}^{-1} \sum_{j=1}^{n_{2}} w_{2}^{k}$.

Thank you for your attention!

