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Abstract

In this paper we establish the empirical likelihood method for the
two-sample case in a general framework. We show that the result of
Qin and Zhao (2000) basically covers the following two-sample models:
the differences of two sample means, smooth Huber estimators, dis-
tribution and quantile functions, ROC curves, probability-probability
(P-P) and quantile-quantile (Q-Q) plots. Finally, the structural re-
lationship models containing the location, the location-scale and the
Lehmann alternative models also fit in this framework. The method is
illustrated with real data analysis and simulation study. The R code
has been developed for all two-sample problems and is available on
the corresponding author’s homepage.
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1 Introduction

Since Owen (1988, 1990) introduced the empirical likelihood (EL) method

for statistical inference, there have been several attempts to generalize it for

the two-sample case. Qin and Zhao (2000) established the empirical likeli-

hood method for differences of two-sample means and cumulative distribution

functions at some fixed point. In the PhD thesis of Valeinis (2007) it has been

showed that this result can be applied also for other two-sample problems

(see also Valeinis, Cers and Cielens, 2010). Moreover, this setup basically

generalizes the results of Claeskens, Jing, Peng and Zhou (2003) and Zhou

and Jing (2003), where ROC curves and P-P plots in the two-sample case

and quantile differences in the one-sample case have been considered, respec-

tively. Although Claeskens, Jing, Peng and Zhou (2003) state that Q-Q plots

would need a different theoretical treatment, in our setup we show how to

treat them in the same way (see Examples 6 and 7).

Consider the two-sample problem, where i.i.d. random variablesX1, . . . , Xn1

and Y1, . . . , Yn2 are independent and have some unknown distribution func-

tions F1 and F2, respectively. Without a loss of generality we assume that

n2 ≥ n1. We are interested to make inference for some function t → ∆(t)

defined on an interval T ⊂ R. Let θ = θ(t) be a function associated with

one of the distribution functions F1 or F2. For fixed t both ∆(t) and θ(t) are

univariate parameters in our setup (for simplicity further on we write ∆ and

θ). We assume that all the information about the unknown true parameters

θ0 and ∆0 are available in the known form of unbiased estimating functions,

i.e.,

EF1w1(X, θ0,∆0, t) = 0, (1)

EF2w2(Y, θ0,∆0, t) = 0. (2)

If ∆0 = θ1 − θ0, where θ0 and θ1 are univariate parameters associated with

F1 and F2, respectively, we have exactly the setup of Qin and Zhao (2000).

Now let us list the main two-sample models which fit in our framework.

Example 1 (Qin and Zhao, 2000). The difference of two sample means.

This topic using EL has been analyzed by Jing (1995), Qin and Zhao (2000)
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and recently by Liu, Zou and Zhang (2008), where the Bartlett correction

has been established for the difference of two sample means. In Valeinis,

Cers and Cielens (2010) the two-sample EL method has been compared by

empirical coverage accuracy with t-test and some bootstrap methods. Denote

θ0 =
∫
xdF1(x) and ∆0 =

∫
ydF2(y)−

∫
xdF1(x). We obtain (1) and (2) by

taking

w1(X, θ0,∆0, t) = X − θ0, w2(Y, θ0,∆0, t) = Y − θ0 −∆0.

Example 2. The difference of smooth M-estimators. Let θ0 and θ1 be

smooth location M-estimators for samples X and Y , respectively. Then

∆0 = θ1 − θ0 and

w1(X, θ0,∆0, t) = ψ̃

(
X − θ0

σ̂1

)
, w2(Y, θ0,∆0, t) = ψ̃

(
Y − θ0 −∆0

σ̂2

)
,

where σ̂1 and σ̂2 are scale estimators, and ψ̃-function corresponds to the

smooth M-estimator introduced in Hampel, Hennig and Ronchetti (2011).

Example 3 (Qin and Zhao, 2000). The difference of two sample distribution

functions. Denote θ0 = F1(t) and ∆0 = F2(t)− F1(t). In this case we obtain

(1) and (2) by taking

w1(X, θ0,∆0, t) = I{X≤t} − θ0, w2(Y, θ0,∆0, t) = I{Y≤t} − θ0 −∆0.

Example 4. The difference of two sample quantile functions. Zhou and

Jing (2003) established the EL method in the one-sample case for quantile

differences. This can be seen as a special case from our result. Denote

θ0 = F−1
1 (t) and ∆0 = F−1

2 (t) − F−1
1 (t). In this case we obtain (1) and (2)

by taking

w1(X, θ0,∆0, t) = I{X≤θ0} − t, w2(Y, θ0,∆0, t) = I{Y≤θ0+∆0} − t.

Example 5 (Claeskens, Jing, Peng and Zhou, 2003). Receiver operating

characteristic (ROC) curve. ROC curve is defined as ∆ = 1−F1(F−1
2 (1− t)),

which is important tool used to summarize the performance of a medical

diagnostic test for determining whether a patient has a disease or not. Denote

θ0 = F−1
2 (1− t) and ∆0 = 1− F1(F−1

2 (1− t)). In this case

w1(X, θ0,∆0, t) = I{X≤θ0} + ∆0 − 1, w2(Y, θ0,∆0, t) = I{Y≤θ0} + t− 1.
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Example 6 (Claeskens, Jing, Peng and Zhou, 2003). Probability-probability

(P-P) plot. ROC curves are closely related to P-P plots, so the results for

ROC curves can easily be applied for P-P plots. Denote θ0 = F−1
2 (t) and

∆0 = F1(F−1
2 (t)), which is the P-P plot of functions F1 and F2. In this case

w1(X, θ0,∆0, t) = I{X≤θ0} −∆0, w2(Y, θ0,∆0, t) = I{Y≤θ0} − t.

Example 7. Quantile-quantile (Q-Q) plot. Denote θ0 = F2(t) and ∆0 =

F−1
1 (F2(t)), which is well known as a Q-Q plot. We have

w1(X, θ0,∆0, t) = I{X≤∆0} − θ0, w2(Y, θ0,∆0, t) = I{Y≤t} − θ0.

Example 8. Structural relationship model. Freitag and Munk (2005) have

introduced the notion of structural relationship model which generalizes the

simple location, the location-scale and the Lehmann alternative models. It

has the following form

F1(t) = φ−2 (F2(φ−1 (t, h)), h), t ∈ R, (3)

where φ1, φ2 are some real-valued functions, φ−i denotes the inverse function

with respect to the first argument, and h ∈ H ⊆ Rl, where l is some positive

constant. In case of the simple location model F1(t) = F2(t − h) we have

φ1(t, h) = t+h and φ2(u, h) = u. To check whether such relationship models

hold for a fixed parameter h one can make inference for the function

∆ := ∆(t) = F1(φ1(F−1
2 (φ2(t, h)), h)),

which is a generalization of the P-P plot considered in Example 6. In this

case the estimating functions are

w1(X, θ0,∆0, t) = I{X≤θ0} −∆0, w2(Y, θ0,∆0, t) = I{Y≤φ−1 (θ0,h0)} − φ2(t, h0),

where θ0 = φ1(F−1
2 (φ2(t, h0)), h0).

Remark 1. In practice it is more appealing to check whether the structural

relationship model (3) holds for any h, which correspond to composite hy-

pothesis. In this case one can estimate the structural parameter h using the

Mallow’s distance and use two-sample plug-in empirical likelihood method

introduced in Valeinis (2007).
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When introducing the two-sample empirical likelihood method Qin and

Zhao (2000) basically refer to the paper of Qin and Lawless (1994) for most

of the proofs. For Examples 1, 2, 3 and 7 this is possible because of the

smoothness of the estimating equations (1) and (2) as the functions of the

parameter θ. When w1 and w2 are nonsmooth (Examples 4, 5, 6 and 8)

the proving technique of Qin and Lawless (1994) based on the Taylor series

expansions is not valid anymore.

To overcome this problem we will use the smoothed empirical likelihood

introduced for quantile inference in the one-sample case by Chen and Hall

(1993). This idea also was used by Claeskens, Jing, Peng and Zhou (2003) for

ROC curves and P-P plots, and Zhou and Jing (2003) for the difference of two

quantiles in the one-sample case. In a recent paper by Lopez, Van Keilegom

and Veraverbeke (2009) a different technique has been used not requiring

the smoothness of w1 and w2. However, among other conditions they need

smoothness conditions on the mathematical expectation as a function of w1

and w2, which can sometimes require further conditions on the underlying

distributions (for example, for quantile inference the underlying distribution

function should be twice continuously differentiable in the neighbourhood of

the true parameter). We stress that one of the advantages of our approach

is that it was possible to produce a rather simple R code for all two-sample

problems based on smoothed estimating functions.

The paper is organized as follows. In Section 2 we introduce the general

empirical likelihood method in the two-sample case based on functions w1

and w2 introduced in (1) and (2). Section 3 introduces the smoothed empir-

ical likelihood method in the two-sample case. The simulation results and a

practical data example are shown in Section 4. All proofs are deferred to the

Appendix.

2 EL in the two-sample case

Following the ideas of Qin and Zhao (2000) in this section we introduce the

empirical likelihood method for two-sample problems. For fixed t ∈ T to
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obtain confidence regions for the function ∆, we define the profile empirical

likelihood ratio function

R(∆, θ) = sup
p,q

n1∏
i=1

(n1pi)

n2∏
j=1

(n2qj), (4)

where p = (p1, . . . , pn1) and q = (q1, . . . , qn2) are two probability vectors, that

is, consisting of nonnegative numbers adding to one.

A unique solution of (4) exists, provided that 0 is inside the convex hull

of the points w1(Xi, θ,∆, t)’s and the convex hull of the w2(Yj, θ,∆, t)’s. The

maximum may be found using the standard Lagrange multipliers method

giving

pi =
1

n1(1 + λ1(θ)w1(Xi, θ,∆, t))
, i = 1, . . . , n1.

qj =
1

n2(1 + λ2(θ)w2(Yj, θ,∆, t))
, j = 1, . . . , n2,

where the Lagrange multipliers λ1(θ) and λ2(θ) can be determined in the

terms of θ by the equations
n1∑
i=1

w1(Xi, θ,∆, t)

1 + λ1(θ)w1(Xi, θ,∆, t)
= 0, (5)

n2∑
j=1

w2(Yj, θ,∆, t)

1 + λ2(θ)w2(Yj, θ,∆, t)
= 0. (6)

Finally, we define the empirical log-likelihood ratio (multiplied by minus two)

as

W (∆, θ) = −2 logR(∆, θ) = 2

n1∑
i=1

log(1 + λ1(θ)w1(Xi, θ,∆, t))

+ 2

n2∑
j=1

log(1 + λ2(θ)w2(Yj, θ,∆, t)).

To find an estimator θ̂ = θ̂(∆) for the nuisance parameter θ that maximizes

R(∆, θ) for a fixed parameter ∆, we obtain the empirical likelihood equation

by setting

∂W (∆, θ)

∂θ
=

n1∑
i=1

λ1(θ)α1(Xi, θ,∆, t)

1 + λ1(θ)w1(Xi, θ,∆, t)
+

n2∑
j=1

λ2(θ)α2(Yj, θ,∆, t)

1 + λ2(θ)w2(Yj, θ,∆, t)
= 0,

(7)
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where

α1(Xi, θ,∆, t) =
∂w1(Xi, θ,∆, t)

∂θ
and α2(Yj, θ,∆, t) =

∂w2(Yj, θ,∆, t)

∂θ
.

Theorem 2 (Qin and Zhao, 2000). Under some standard smoothness as-

sumptions on functions w1, w2, α1 and α2 (see also Qin and Lawless, 1994),

there exists a root θ̂ of (7) such that θ̂ is a consistent estimate for θ0, R(∆, θ)

attains its local maximum value at θ̂, and

√
n1(θ̂ − θ0)→d N

(
0,

β1β2

β2β2
10 + kβ1β2

20

)
,

where k <∞ is a positive constant such that n2/n1 → k as n1, n2 →∞,

−2 logR(∆0, θ̂)→d χ
2
1,

as n1, n2 → ∞, for each fixed t ∈ T and →d denotes the convergence in

distribution,

β1 = EF1w
2
1(X, θ0,∆0, t), β2 = EF2w

2
2(Y, θ0,∆0, t),

β10 = EF1α1(X, θ0,∆0, t), β20 = EF2α2(Y, θ0,∆0, t).

Theorem 2 holds for Examples 1, 2, 3 and 7, when w1 and w2 are smooth

functions of θ. In order to apply this result to other Examples we propose

to use the smoothed empirical likelihood method (see next Section 3). The

pointwise empirical likelihood confidence interval for each fixed t ∈ T for ∆

has the following form ∆ : {R(∆, θ̂) > c} for the true ∆0, where θ̂ is a root

of (7). The constant c can be calibrated using Theorem 2.

3 Smoothed EL in the two-sample case

By appropriate smoothing of the empirical likelihood method Chen and Hall

(1993) showed that the coverage accuracy may be improved from order n−1/2

to n−1. Moreover, the smoothed empirical likelihood appears to be Bartlett-

correctable. Thus, an empirical correction for scale can reduce the size of

coverage error from order n−1 to n−2. For j = 1, 2 let Hj denote a smoothed
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version of the degenerate distribution function H0 defined by H0(x) = 1 for

x ≥ 0, 0 otherwise. Define Hj(t) =
∫
u≤tKj(u)du, where Kj is a compactly

supported r-th order kernel which is commonly used in nonparametric density

estimation. That is, for some integer r ≥ 2 and constant κ 6= 0, Kj is a

function satisfying

∫
ukKj(u)du =


1, if k = 0,

0, if 1 ≤ k ≤ r − 1,

κ, if k = r.

We also define Hbj (t) = Hj(t/bj), where b1 = b1(n1) and b2 = b2(n2) are

bandwidth sequences, converging to zero as n1, n2 grows to infinity.

Let p = (p1, . . . , pn1) and q = (q1, . . . , qn2) be two vectors consisting of non-

negative numbers adding to one. Define further the estimators

F̂b1,p(x) =

n1∑
i=1

piHb1(x−Xi) and F̂b2,q(y) =

n2∑
j=1

qjHb2(y − Yj).

For this setting we define the profile two-sample smoothed empirical likeli-

hood ratio function for ∆ as

R(sm)(∆, θ) = sup
p,q

n1∏
i=1

(n1pi)

n2∏
j=1

(n2qj), (8)

where the latter supremum is a subject to the constraints which are listed

for Examples 3-8 in Table 1. For all these examples the respective smoothed

estimating equations can be found in Table 2.

Table 1: Constraints for the smoothed empirical likelihood method.

Example Constraint 1 Constraint 2

3 F̂b1,p(t) = θ0 F̂b2,q(t) = θ0 + ∆0

4 F̂b1,p(θ0) = t F̂b2,q(θ0 + ∆0) = t

5 F̂b1,p(θ0) = 1−∆0 F̂b2,q(θ0) = 1− t
6 F̂b1,p(θ0) = ∆0 F̂b2,q(θ0) = t

7 F̂b1,p(∆0) = θ0 F̂b2,q(t) = θ0

8 F̂b1,p(θ0) = ∆0 F̂b2,q(φ
−
1 (θ0, h0)) = φ2(t, h0)
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Table 2: Estimating equations for the smoothed empirical likelihood method.

Example w1 w2

3 Hb1(t−Xi)− θ0 Hb2(t− Yj)− θ0 −∆0

4 Hb1(θ0 −Xi)− t Hb2(θ0 + ∆0 − Yj)− t
5 Hb1(θ0 −Xi)− 1 + ∆0 Hb2(θ0 − Yj)− 1 + t

6 Hb1(θ0 −Xi)−∆0 Hb2(θ0 − Yj)− t
7 Hb1(∆0 −Xi)− θ0 Hb2(t− Yj)− θ0

8 Hb1(θ0 −Xi)−∆0 Hb2(φ
−
1 (θ0, h0)− Yj)− φ2(t, h0)

From Table 2 it is obvious that all estimating equations have a similar

form. To unify all these cases let us rewrite the estimating equations as

follows

w1(Xi, θ,∆, t) = Hb1(ξ1(θ)−Xi)−ξ2(θ), w2(Yj, θ,∆, t) = Hb2(ψ1(θ)−Yj)−ψ2(θ),

where

EF1w1(Xi, θ0,∆0, t) = 0, EF2w2(Yj, θ0,∆0, t) = 0. (9)

First we define the smoothed empirical likelihood estimator ∆̂ as follows

∆̂ = arg min
∆
{−2 logR(∆, θ̂)}. (10)

The smoothness conditions of Theorem 2 are fulfilled for the smoothed em-

pirical likelihood function R(sm)(∆, θ). However, in order to find out the

asymptotic rates for the bandwidths b1 and b2 one should review the proof

of Theorem 2. For ROC curves (see Example 5) the rates have been derived

by Claeskens, Jing, Peng and Zhou (2003). Concerning the generalized P-P

plot of structural relationship models (see Example 8) the rates can be found

in Valeinis (2007).

Following Qin and Lawless (1994) and Qin and Zhao (2000) first we show

that there exists a root θ̂ of (7) when the function R(sm)(∆, θ̂) attains its

local maximum value in the neighborhood of the true parameter θ0 such as

|θ − θ0| ≤ n−η1 , where 1/3 < η < 1/2. Concerning the proof of maximization

problem we follow closely the proving tehnique of Qin and Lawless (1994),

where they use the technique introduced by Owen (1990).
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Throughout, we assume that the following conditions hold.

(A) Assume that f1(= F ′1) and f
(r−1)
1 exist in a neighborhood of ξ1(θ0) and

are continuous at ξ1(θ0). Assume the same for the density function f2 in a

neighborhood of ψ1(θ0).

(B) As n1, n2 →∞, n2/n1 → k, where 0 < k <∞.

The condition (A) is a standard one (see also Chen and Hall, 1993 or

Claeskens, Jing, Peng and Zhou, 2003), which requires that the respective

density functions are smooth enough in a neighborhood of ξ1(θ0) and ψ1(θ0).

Furthermore the condition (B) assures the same growth rate for both samples.

Lemma 3. Assume conditions (A) and (B) hold. Then with the probability

converging to 1 as n1, n2 → ∞, R(sm)(∆, θ) attains its maximum value at

some point θ̂ in the neighbourhood of θ0 for all the cases considered in Ex-

amples 3-8. More specifically there exists a root θ̂ of equation (7), such that

|θ̂ − θ0| ≤ n−η1 , where 1/3 < η < 1/2.

Next we derive the limiting distribution of the statistic−2 logR(sm)(∆0, θ̂),

which as expected is the chi-squared distribution with the degree of freedom

one.

Lemma 4. In addition to the conditions of Lemma 3 assume that for i = 1, 2,

nib
4r
i → 0 (11)

as n1, n2 →∞. Then for all cases considered in Examples 3-8 it follows that

√
n1(θ̂ − θ0)→d N

(
0,

β1β2

β2β2
10 + kβ1β2

20

)
,

where β1 = ξ2(θ0)(1− ξ2(θ0)), β2 = ψ2(θ0)(1−ψ2(θ0)), β10 = f1(ξ1(θ0))ξ′1(θ0),

β20 = f2(ψ1(θ0))ψ′1(θ0). We also have

λ1(θ̂) = −kβ20

β10

λ2(θ̂) + op(n
−1/2
1 ),

√
n1λ2(θ̂)→d N

(
0,

β2
10

kβ2β2
10 + k2β1β2

20

)
.

10



Theorem 5. In addition to the conditions of Lemma 3 assume that for

i = 1, 2 we have

nib
3r
i → 0 (12)

as n1, n2 →∞. Then

−2 logR(sm)(∆0, θ̂)→d χ
2
1.

4 Simulation study and a data example

To illustrate the method we have performed a coverage accuracy simulation

study for Examples 3, 4, 6 and 7 from Section 1 and compared it to the

coverage accuracies obtained by several bootstrap methods. Examples 5 and

8 were omitted because they can essentially be transformed to Example 6,

while a coverage accuracy study for Example 1 is given in Valeinis, Cers and

Cielens (2010). The results on Example 2 have been recently discussed in

the International Conference on Robust statistics 2011 and will be reported

elsewhere. Finally, the method is also demonstrated on a real data example.

We implemented the empirical likelihood method in R. The program was

written to be as general as possible, so that implementing each example from

Section 1 required only minimal additional programming. Besides the esti-

mating functions (1) and (2), the search intervals for the ∆ (when searching

for the optimal value) and θ must be calculated differently for each example.

The intervals are calculated from the requirement of 0 being inside the con-

vex hulls of the points w1(Xi, θ,∆, t) for i = 1, 2, . . . , n1 and w2(Yj, θ,∆, t)

for j = 1, 2, . . . , n2. This criterion is sufficient to find intervals for θ and

∆ where all equations (5), (6) and (7) have solutions and it is possible to

calculate the log-likelihood ratio.

The program calculates the (smoothed) log-likelihood ratio (4) defined

also in (8) for a given value of ∆ by solving (7) for θ, implicitly finding

λ1 and λ2 from (5) and (6). To estimate the true parameter ∆0 we mini-

mize the log-likelihood over the possible values of ∆. To construct pointwise

confidence intervals we solve for values of ∆ where the log-likelihood ratio

statistic equals the critical values from the χ2
1 distribution. We solve for the

solutions using the built in function uniroot, and minimize using the built in
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function optimize. The program can be found on the corresponding author

homepage.

We constructed 95% coverage accuracies for the difference of two sample

distribution and quantile functions, P-P plots and Q-Q plots (Examples 3,

4, 6 and 7 from Section 1) shown in Tables 3 and 4. Each coverage accuracy

was constructed by taking 10,000 pseudo-random samples from the N(0, 1)

distribution. For smoothing with the empirical likelihood method the stan-

dard normal kernel was used with three sample size dependent values of the

bandwidth parameter bi = {bi1 = n−0.1
i , bi1 = n−0.2

i , bi1 = n−0.3
i } for i = 1, 2.

For the comparison, the coverage accuracies by the normal and the percentile

bootstrap were also constructed and are shown in the Tables along with the

empirical likelihood coverage accuracies.

It can be seen from Tables 3 and 4, that the coverage accuracies are gener-

ally converging towards 0.95 as the sample size increases. However, there are

significant differences depending on the statistic and the point at which the

coverage accuracies are calculated. For all statistics, except the difference of

two sample distribution functions, the method performs significantly better

at the center point (t = 0.5 for P-P plots and quantile differences; t = 0 for

Q-Q plots), for which it is very near to 0.95 already from the smallest sam-

ple sizes. For all statistics the empirical likelihood converges to 0.95 fairly

quickly, and at sample size n1 = n2 = 50 all coverage accuracies are already

very near to 0.95.

The empirical likelihood outperforms the bootstrap for P-P plots, Q-Q

plots and sample distribution function differences, while the bootstrap was

better for quantile differences. The choice of bandwidth affects the over-

all performance of the empirical likelihood only moderately and the effect

produced by changes in sample size is greater.

We demonstrate the practical application of the method on the data set

analyzed in Simpson, Olsen and Eden (1975). The data shows the results

of a number of weather modification experiments conducted between 1968

and 1972 in Florida. In the experiments some clouds were seeded with silver

iodide which should result in a higher growth of cumulus clouds and, there-

fore, increased precipitation. The data shows the rainfall from seeded and

unseeded clouds measured in acre-feet — there are 26 observations for each

12



Table 3: 95% coverage accuracy of pointwise confidence intervals for
∆1 = F2(t)− F1(t) and ∆2 = F−1

1 (F2(t)) constructed by bootstrap (B.N. —
normal bootstrap, B.P. — percentile bootstrap) and by EL using different

bandwidths bi = {bi1 = n−0.1
i , bi2 = n−0.2

i , bi3 = n−0.3
i } for i = 1, 2 and

F1 = F2 = N(0, 1) at three different values of t = {−1, 0, 1}.

∆1 ∆2

t n1 n2 bi1 bi2 bi3 B.N. B.P. bi1 bi2 bi3 B.N. B.P.

-1 15 15 0.920 0.920 0.907 0.726 0.602 0.874 0.868 0.869 0.844 0.687
-1 20 20 0.929 0.928 0.924 0.760 0.689 0.913 0.911 0.911 0.887 0.740
-1 30 30 0.939 0.938 0.938 0.799 0.760 0.942 0.938 0.936 0.925 0.805
-1 50 50 0.947 0.945 0.947 0.835 0.808 0.946 0.946 0.948 0.938 0.861
-1 20 30 0.933 0.933 0.933 0.868 0.845 0.934 0.933 0.934 0.905 0.764
-1 30 20 0.938 0.930 0.933 0.872 0.848 0.920 0.920 0.921 0.904 0.783

0 15 15 0.939 0.940 0.943 0.784 0.759 0.939 0.939 0.939 0.941 0.867
0 20 20 0.946 0.944 0.945 0.804 0.792 0.942 0.942 0.945 0.945 0.874
0 30 30 0.947 0.947 0.947 0.846 0.830 0.948 0.945 0.946 0.950 0.887
0 50 50 0.947 0.947 0.946 0.863 0.850 0.946 0.948 0.949 0.942 0.892
0 20 30 0.945 0.941 0.944 0.896 0.890 0.947 0.949 0.946 0.942 0.864
0 30 20 0.945 0.950 0.945 0.894 0.890 0.942 0.944 0.945 0.947 0.901

1 15 15 0.922 0.918 0.907 0.735 0.607 0.877 0.872 0.859 0.849 0.688
1 20 20 0.934 0.930 0.923 0.762 0.691 0.911 0.915 0.909 0.887 0.740
1 30 30 0.940 0.936 0.939 0.799 0.760 0.940 0.936 0.941 0.919 0.816
1 50 50 0.945 0.944 0.947 0.822 0.796 0.947 0.948 0.948 0.942 0.864
1 20 30 0.930 0.936 0.929 0.866 0.842 0.933 0.931 0.921 0.905 0.772
1 30 20 0.932 0.930 0.931 0.869 0.841 0.916 0.919 0.916 0.901 0.790
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Table 4: 95% coverage accuracy of pointwise confidence intervals for
∆1 = F−1

2 (t)− F−1
1 (t) and ∆2 = F1(F−1

2 (t)) constructed by bootstrap (B.N. —
normal bootstrap, B.P. — percentile bootstrap) and by EL using different

bandwidths bi = {bi1 = n−0.1
i , bi2 = n−0.2

i , bi3 = n−0.3
i } for i = 1, 2 and

F1 = F2 = N(0, 1) at three different values of t = {0.1, 0.5, 0.9}.

∆1 ∆2

t n1 n2 bi1 bi2 bi3 B.N. B.P. bi1 bi2 bi3 B.N. B.P.

0.1 15 15 0.879 0.833 0.797 0.934 0.949 0.895 0.896 0.897 0.787 0.781
0.1 20 20 0.911 0.892 0.875 0.950 0.966 0.912 0.916 0.919 0.851 0.830
0.1 30 30 0.928 0.929 0.926 0.954 0.965 0.931 0.933 0.941 0.912 0.898
0.1 50 50 0.942 0.947 0.951 0.950 0.966 0.945 0.948 0.948 0.947 0.952
0.1 20 30 0.914 0.912 0.894 0.943 0.960 0.924 0.922 0.929 0.855 0.842
0.1 30 20 0.919 0.914 0.896 0.951 0.962 0.918 0.924 0.932 0.901 0.883

0.5 15 15 0.949 0.952 0.952 0.953 0.966 0.946 0.949 0.950 0.928 0.967
0.5 20 20 0.943 0.948 0.952 0.944 0.962 0.947 0.953 0.950 0.930 0.950
0.5 30 30 0.950 0.954 0.951 0.948 0.964 0.949 0.948 0.949 0.935 0.951
0.5 50 50 0.950 0.949 0.950 0.948 0.962 0.953 0.951 0.950 0.945 0.956
0.5 20 30 0.948 0.947 0.951 0.948 0.962 0.950 0.947 0.945 0.940 0.950
0.5 30 20 0.949 0.945 0.954 0.948 0.962 0.948 0.947 0.950 0.933 0.952

0.9 15 15 0.894 0.891 0.880 0.929 0.943 0.903 0.897 0.898 0.935 0.945
0.9 20 20 0.915 0.909 0.911 0.950 0.963 0.913 0.914 0.914 0.940 0.932
0.9 30 30 0.930 0.935 0.937 0.953 0.965 0.929 0.935 0.938 0.945 0.940
0.9 50 50 0.940 0.946 0.953 0.949 0.965 0.942 0.945 0.947 0.944 0.947
0.9 20 30 0.919 0.920 0.924 0.947 0.961 0.923 0.926 0.925 0.934 0.939
0.9 30 20 0.914 0.920 0.920 0.947 0.958 0.922 0.919 0.931 0.947 0.935
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Figure 1: Different two-sample plots for the cloud seeding example, constructed
using smoothed empirical likelihood. All plots show also the 95% pointwise
confidence bands. A box-plot (a) was added for visual comparison of both

samples.

15



case.

When comparing means, the t-test assigns a p-value of 0.029 to the hy-

pothesis of the two means being equal, while the empirical likelihood method

(Example 1 from Section 1) assigns a p-value of only 0.007. The difference

can be explained by the non-normality of the data coupled with the small

data sizes.

Figure 1 shows Examples 3, 4, 5, 6 and 7 from Section 1 with the smoothed

empirical likelihood estimator (10) and 95% pointwise confidence intervals.

For each sample we used the function bw.nrd in R, which implements a rule-

of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.

All the results seem to indicate that the seeding has had an effect on the

rainfall. Finally, note that simultaneous confidence bands can be constructed

using the empirical likelihood pointwise intervals combined by the bootstrap

method as first shown in Hall and Owen (1993). For application examples

for this method see also Claeskens, Jing, Peng and Zhou (2003) and Valeinis,

Cers and Cielens (2010).

From our simulation study we find that for normally distributed data

the empirical likelihood method is comparable with the t-test (see Valeinis,

Cers and Cielens, 2010) and bootstrap methods. Clearly it is advantageous

due to asymmetric confidence intervals, which can reflect some interesting

features in data sets. Moreover, it is a nonparametric procedure, which does

not require the normality of the data. Therefore, in special cases it can be

advantageous over classical parametric procedures.
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5 Appendix

First we need a technical lemma, which will be used proving the main theo-

rem.

i) Technical lemma

Lemma 6. Assume that condition (i) is satisfied. For some fixed θ, such

that |θ − θ0| ≤ n−η1 we have

E{w1(X, θ,∆, t)} = F1(ξ1(θ))− F1(ξ1(θ0)) + ζn−η1 +O(br1), (13)

E{w2(Y, θ,∆, t)} = F2(ψ1(θ))− F2(ψ2(θ0)) + ζn−η2 +O(br2), (14)

var{w1(X, θ,∆, t)} = F1(ξ1(θ))(1− F1(ξ1(θ))) +O(b1), (15)

var{w2(Y, θ,∆, t)} = F1(ψ1(θ))(1− F1(ψ1(θ))) +O(b2), (16)

E{α1(X, θ,∆, t)} = f1(ξ1(θ))ξ′1(θ) + ζ +O(br1), (17)

E{α2(Y, θ,∆, t)} = f2(ψ1(θ))ψ′1(θ) + ζ +O(br2). (18)

Proof. Let us do some simple calculations involving Taylor expansions.

We will do it only for the function w1. Integration by parts and variable

transformation gives

E
{
H1

(
ξ1(θ)−X

b1

)}
− F1(ξ1(θ))

=

∫ +∞

−∞
H1

(
ξ1(θ)− x

b1

)
dF1(x)− F1(ξ1(θ))

=

∫ ∞
−∞
{F1(ξ1(θ)− b1u)− F1(ξ1(θ))}K1(u)du

=

∫ ∞
−∞

{
f1(ξ1(θ))(−b1u) + . . .+

1

r!
f

(r−1)
1 (ξ1(θ))(−b1u)r + o(br1)

}
K1(u)du

= O(br1).

It follows

E{w1(X, θ,∆, t) = E
{
H1

(
ξ1(θ)−X

b1

)}
− ξ2(θ)

= F1(ξ1(θ))− ξ2(θ) +O(br1)

= F1(ξ1(θ))− ξ2(θ0)− ξ′2(θ∗)n−η1 +O(br1)

= F1(ξ1(θ))− F1(ξ1(θ0)) + ζn−η1 +O(br1)

17



where θ∗ ∈ [θ0, θ] and the last assertion follows from (9) with ζ = −1 for

Examples 3 and 7 and ζ = 0 for Examples 4, 5, 6, 8 (see Table 2). Thus we

have shown (13) and (14).

E
{
H2

1

(
ξ1(θ)−X

b1

)}
=

∫ +∞

−∞
H2

1

(
ξ1(θ)− y

b1

)
dF1(y)

= 2

∫ ∞
−∞
{F1(ξ1(θ)− b1u)}H1(u)dH1(u)

= F1(ξ1(θ)

∫ ∞
−∞

dH2
1 (u)− 2

∫ ∞
−∞

b1uf1(µ∗)H1(u)dH1(u)

= F1(ξ1(θ)) +O(b1),

where µ∗ ∈ [ξ1(θ)− b1u, ξ1(θ)]. Therefore we have

var{w1(X, θ,∆, t)} = F1(ξ(θ))− F 2
1 (ξ(θ)) +O(b1)

and both (15) and (16) follow. At last

E{α1(X, θ,∆, t)} =

∫ +∞

−∞

(
∂Hb1(ξ1(θ)− x)

∂θ
− ξ′2(θ)

)
dF (x)

=
1

b1

∫ +∞

−∞
K1

(
ξ1(θ)− x

b1

)
ξ′1(θ)dF (x) + ζ

= ξ′1(θ)

∫ +∞

−∞
f1(ξ1(θ)− b1y)K1(y)dy + ζ

= f1(ξ1(θ))ξ′1(θ) + ζ +O(br1).

Therefore the equations (17) and (18) hold.

ii) Proof of Lemma 3.

First for some k ∈ N denote by

w̄k1(X, θ,∆, t) =
1

n1

n1∑
i=1

wk1(Xi, θ,∆, t), ᾱ
k
1(X, θ,∆, t) =

1

n1

n1∑
i=1

αk1(Xi, θ,∆, t).

Then for fixed θ such that |θ − θ0| ≤ n−η the following is true

w̄1(X, θ,∆0, t) = w̄1(X, θ0,∆0, t) + ᾱ1(X, θ∗,∆0, t)(θ − θ0), (19)
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for some θ∗ ∈ [θ0, θ]. From strong law of large numbers (see, for example,

Serfling, 1980) and Lemma 6

w̄1(X, θ0,∆0, t) = E(w1(X, θ0,∆0, t)) +O(n
−1/2
1 ln(n1)1/2)

= O(br1) +O(n
−1/2
1 ln(n1)1/2) a.s.

and

ᾱ1(X, θ∗,∆0, t) = f1(ξ1(θ∗))ξ′1(θ∗)+ζ+O(br1)+O(n
−1/2
1 ln(n1)1/2) = O(1) a.s.

Therefore from (19) we have w̄1(X, θ,∆0, t) = O(br1) +O(n−η) almost surely.

From definition of λ1, the following inequality holds, where the first term is

equal to zero,

n−1
1

∣∣∣∣∣
n1∑
i=1

{λ1(θ)w2
1(Xi, θ,∆0, t)(1 + λ1(θ)w1(Xi, θ,∆0, t))

−1 − w1(Xi, θ,∆0, t)}

∣∣∣∣∣
≥ |λ1(θ)|(1 + |λ1(θ)| max

1≤i≤n1

|w1(Xi, θ,∆0, t)|)−1w̄2
1(X, θ,∆0, t)− w̄1(X, θ,∆0, t).

Similarly as in Qin and Lawless (1994) and Owen (1990) we conclude that

|λ1(θ)|(1 + |λ1(θ)| max
1≤i≤n1

|w1(Xi, θ,∆0, t)|)−1w̄2
1(X, θ,∆0, t)

= O(br1) +O(n−η). (20)

Clearly for all Examples 3-8 (see Table 2) we have max1≤i≤n1 |w1(Xi, θ,∆0, t)|
≤ c for some constant c. Again by the strong law of large numbers and

Lemma 6,

w̄2
1(X, θ,∆0, t)

= F1(ξ1(θ))(1− F1(ξ1(θ))) +O(b1) +O(n
−1/2
1 ln(n1)1/2) = O(1). (21)

Finally from equations (20) and (21) we conclude that almost surely λ1(θ) =

O(br1) + O(n−η1 ) when θ such as |θ − θ0| ≤ n−η1 . Also note that λ1(θ0) =

O(br1) +O(n
−1/2
1 ln(n1)1/2) almost surely. From (5) we have

0 =
1

n1

n1∑
i=1

w1(Xi, θ,∆0, t)(
1− λ1(θ)w1(Xi, θ,∆0, t) +

λ2
1(θ)w2

1(Xi, θ,∆0, t)

1 + λ1(θ)w1(Xi, θ,∆0, t)

)
(22)
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which leads to

0 = w̄1(X, θ,∆, t)− λ1(θ)w̄2
1(X, θ,∆0, t) +

1

n1

n1∑
i=1

λ2
1(θ)w3

1(Xi, θ,∆0, t)

1 + λ1(θ)w1(Xi, θ,∆0, t)
.

The modulo from the last term is bounded by

1

n1

n1∑
i=1

|w3
1(Xi, θ,∆0, t)||λ1(θ)|2|1 + λ1(θ)w1(Xi, θ,∆0, t)|−1

= O(1)O(br1 + n−η1 )2O(1) = O(br1 + n−η1 )2 a.s.

Therefore

λ1(θ) =
w̄1(X, θ,∆0, t)

w̄2
1(X, θ,∆0, t)

+O(br1 + n−η1 )2 = O(br1 + n−η). (23)

uniformly for θ ∈ {θ : |θ − θ0| ≤ n−η1 }. Put

H1(θ,∆) =

n1∑
i=1

log(1 + λ1(θ)w1(Xi, θ,∆, t)),

H2(θ,∆) =

n2∑
j=1

log(1 + λ2(θ)w2(Yj, θ,∆, t)).

Hence the test statistic −2 logRsm(θ,∆) = 2H1(θ,∆)+2H2(θ,∆). Note that

log(1 + x) = x− 1

2
x2 +O(x3).

By (23) and Taylor expansion we have almost surely

H1(θ,∆0)

=

n1∑
i=1

λ1(θ)w1(Xi, θ,∆0, t)−
1

2

n1∑
i=1

λ2
1(θ)w2

1(Xi, θ,∆0, t) +O(n1λ
3
1(θ))O(1)

=
n1

2
(w̄1(X, θ,∆0, t))

2 (w̄2
1(X, θ,∆0, t)

)−1
+O(n1)O(br1 + n−η1 )3

=
n1

2
(w̄1(X, θ0,∆0, t) + ᾱ1(X, θ0,∆0, t)(θ − θ0))2O(1) +O(n1)O(br1 + n−η1 )3

=
n1

2

(
O(br1) +O(n

−1/2
1 ln(n1)1/2) +O(1)O(n−η1 )

)2

+O(n1)O(br1 + n−η1 )3

= O(n1)O(br1 + n−η1 )2.
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Similarly,

H1(θ0,∆0)

=
n1

2
(w̄1(Xi, θ0,∆0, t))

2 (w̄2
1(Xi, θ0,∆0, t)

)−1
+O(n1)O(br1 + n

−1/2
1 ln(n1)1/2)3.

=
n1

2
(O(br1) +O(n

−1/2
1 ln(n1)1/2))2 +O(n1)O(br1 + n

−1/2
1 ln(n1)1/2)3.

= O(n1)(O(br1 + n
−1/2
1 ln(n1)1/2)2.

Since H(θ,∆) is continuous with respect to the parameter θ as |θ−θ0| ≤ n−η,

it has the minimum value in the interior of the interval. A similar proof can

be carried out for the function H2(θ,∆). Therefore also −2 logRsm(θ,∆) has

the minimum value in the interior of the interval |θ − θ0| ≤ n−η1 . The value

θ̂ obtained at this minimum point satisfies (7).

iii) Proof of Lemma 4

For j = 1, 2 denote λ̂j = λj(θ̂) and

Q1(θ, λ1, λ2) =
1

n1

n1∑
i=1

w1(Xi, θ,∆, t)

1 + λ1(θ)w1(Xi, θ,∆, t)
,

Q2(θ, λ1, λ2) =
1

n2

n2∑
j=1

w2(Yj, θ,∆, t)

1 + λ2(θ)w2(Yj, θ,∆, t)
,

Q3(θ, λ1, λ2) = λ1(θ)

n1∑
i=1

α1(Xi, θ,∆, t)

1 + λ1(θ)w1(Xi, θ,∆, t)

+ λ2(θ)

n2∑
j=1

α2(Yj, θ,∆, t)

1 + λ2(θ)w2(Yj, θ,∆, t)
.

From Lemma 3, we have

Qi(θ̂, λ̂1, λ̂2) = 0 for i = 1, 2, 3.

By Taylor expansion we have

0 = Qi(θ̂, λ̂1, λ̂2) = Qi(θ0, 0, 0) +
∂Qi(θ0, 0, 0)

∂θ
(θ̂ − θ0)

+
∂Qi(θ0, 0, 0)

∂λ1

λ̂1 +
∂Qi(θ0, 0, 0)

∂λ2

λ̂2 +Op(b
r
1 + n−η1 )2, i = 1, 2, 3.
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From the assumption (11), we have Op(b
r
1 + n−η1 )2 = op(n

−1/2
1 ). From the

strong law of large numbers it follows almost surely

∂Q1(θ0, 0, 0)

∂θ
=
∂Q1(θ0, 0, 0)

∂λ1

→ f1(ξ1(θ0))ξ′1(θ0),

∂Q2(θ0, 0, 0)

∂θ
=
∂Q2(θ0, 0, 0)

∂λ2

→ f2(ψ1(θ0))ψ′1(θ0),

∂Q1(θ0, 0, 0)

∂λ1

→ −F1(ξ1(θ0))(1− F1(ξ1(θ0))) = −ξ2(θ0)(1− ξ2(θ0)),

∂Q2(θ0, 0, 0)

∂λ2

→ −F2(ψ1(θ))(1− F2(ψ1(θ0))) = −ψ2(θ0)(1− ψ2(θ0)).

Other partial derivatives evaluated at point (θ0, 0, 0) are zero. So, θ̂ − θ0

λ̂1

λ̂2

 = −S−1

 Q1(θ0, 0, 0)

Q2(θ0, 0, 0)

0

+ op(n
−1/2
1 ),

where the limiting matrix

S =

 f1(ξ1(θ0))ξ′1(θ0) −ξ2(θ0)(1− ξ2(θ0)) 0

f2(ψ1(θ0))ψ′1(θ0) 0 −ψ2(θ0)(1− ψ2(θ0))

0 f1(ξ1(θ0))ξ′1(θ0) kf2(ψ1(θ0))ψ′1(θ0)

 .

The asymptotic behaviour of θ̂, λ̂1 and λ̂2 now follows from

√
n

(
Q1(θ0, 0, 0)

Q2(θ0, 0, 0)

)

→d N

((
0

0

)
,

(
ξ2(θ0)(1− ξ2(θ0)) 0

0 k−1ψ2(θ0)(1− ψ2(θ0))

))
and easy calculations (see also Qin and Zhao, 2000).

IV) Proof of Theorem 5.

First note that from assumption (12) we have almost surely

O(n1)O(λ3
1(θ̂))O

(
1

n1

n1∑
i=1

w3
1(Xi, θ̂,∆, t)

)
= O(n1)O(br1 + n−η1 )3O(1) = o(1).
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Therefore using Taylor expansion,

logR(θ̂,∆0) = −n1λ1(θ̂)w̄1(X, θ̂,∆0, t) +
n1

2
λ2

1(θ̂)w̄2
1(X, θ̂,∆0, t)

− n2λ2(θ̂)w̄2
1(Y, θ̂,∆0, t) +

n2

2
λ2

2(θ̂)w̄2
2(Y, θ̂,∆0, t) + op(1),

Now from (5) and (6) similarly as in (22), we have

w̄1(X, θ̂,∆0, t) = λ1(θ̂)w̄2
1(X, θ̂,∆0, t) +Op(b

r
1 + n−η1 )2.

Similarly

w̄2(Y, θ̂,∆0, t) = λ2(θ̂)w̄2
2(Y, θ̂,∆0, t) +Op(b

r
2 + n−η2 )2.

Using

w̄2
1(X, θ̂,∆0, t) = ξ2(θ0)(1− ξ2(θ0)) + op(1),

w̄2
2(Y, θ̂,∆0, t) = ψ2(θ0)(1− ψ2(θ0)) + op(1),

and from Lemma 3 follows

−2 logR(sm)(∆0, θ̂) = n1λ
2
1(θ̂)w̄2

1(X, θ̂,∆0, t) + n2λ
2
2(θ̂)w̄2

2(Y, θ̂,∆0, t) + op(1)

= n1k
2

(
f2(ψ1(θ0))ψ′1(θ0)

f1(ξ1(θ0))ξ′1(θ0)

)2

λ2
2(θ̂)ξ2(θ0)(1−ξ2(θ0))+n2λ

2
2(θ̂)ψ2(θ0)(1−ψ2(θ0))+op(1)

= (
√
n1λ2(θ̂))2

(
k2β

2
20

β2
10

β1 +
n2

n1

β2

)
+ op(1)→d χ

2
1,

where β10, β20, β1 and β2 are defined in Lemma 4.
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