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Abstract. A common problem in mathematical statistics is to check whether two
samples differ from each other. From modelling point of view it is possible to make
a statistical test for the equality of two means or alternatively two distribution func-
tions. The second approach allows to represent the two-sample test graphically. This
can be done by adding simultaneous confidence bands to the probability-probability
(P-P) or quantile-quantile (Q-Q) plots. In this paper we compare by empirical cover-
age accuracy the classical two-sample t-test, empirical likelihood method and several
bootstrap methods. For a real data example both Q-Q and P-P plots with simultane-
ous confidence bands have been plotted using the smoothed empirical likelihood and
smoothed bootstrap methods.

Key words: two-sample problem, t-test, empirical likelihood, quantile - quantile
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1 INTRODUCTION

Many statistical applications deal with two groups of observations of the same
kind that originate from two possibly different model distributions. One of the
most common question in statistical applications is whether these two distri-
butions have different expectations. More specifically, let X1, X2, . . . , Xn1

and
Y1, Y2, . . . , Yn2

be two independent samples with distribution functions F1 and
F2 and expectations µ1 and µ2, respectively. In this case we wish to test the
hypothesis

H0 : µ1 = µ2 against H1 : µ1 6= µ2. (1.1)

The alternative hypothesis H1 can be set also to be one-sided (µ1 > µ2 or
µ1 < µ2) depending on the practical applications. Among the statistical meth-
ods dealing with the testing problem (1.1) we have to mention the classical
two-sample t-test, empirical likelihood method and different standard boot-
strap methods. The question is which method to use for a particular practical
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problem under consideration. t-test is known to be a robust test although it is
based on a very restrictive assumption that the modelling distributions F1 and
F2 should be normal. Empirical likelihood and bootstrap methods are non-
parametric statistical methods, which do not have the restrictive assumption
of normality.

A common method to compare different tests dealing with the same problem
is to make empirical power comparison by Monte-Carlo simulations with respect
to different alternatives. In this paper we will alternatively compare empirical
coverage accuracy of pointwise confidence intervals for the parameter µ2 − µ1

for all methods mentioned above. For the chosen significance level α if the
confidence interval does not contain 0 then the null hypothesis (1.1) is rejected
at this level. Therefore deriving confidence intervals for µ2−µ1 not only contain
the answer to the testing problem, but also give an additional information where
the true parameter lies with some prescribed confidence 1 − α.

One may also approach the two-sample problem from an alternative point
of view. We can test the hypothesis

H0 : F1 = F2 against H1 : F1 6= F2. (1.2)

which of course is stronger than (1.1). There are many statistical tests dealing
with this problem, among them famous are Kolmogorov-Smirnov, Cramer-von
Mises and Anderson-Darling tests. However, to check (1.2) we propose to
construct simultaneous confidence intervals for the probability - probability
(P-P) or quantile - quantile (Q-Q) plot of the two distribution functions. P-P
plot is defined as the plot of the function {F1(F

−1
2 (y)) : y ∈ (0, 1)} and Q-Q

plot is defined as {F−1
1 (F2(x)) : x ∈ R}. Obviously when both distributions F1

and F2 are equal, the P-P and Q-Q plot should lie on the 45-degree line. Adding
simultaneous confidence intervals gives a formal two-sample test. We wish to
stress that this idea is very appealing from practical point of view and this is
not much recognized by statisticians. The procedure is: 1) draw an empirical
P-P or Q-Q plot; 2) add simultaneous bands at some chosen confidence level;
3) if the diagonal y = x fits into the bands at every point do not reject the null
hypothesis. Almost every statistical package provides a possibility to construct
the empirical Q-Q and P-P plots with pointwise confidence intervals. One of our
goals was to make a code in statistical package R constructing the simultaneous
bands (available on the author’s homepage).

We construct simultaneous confidence bands using the smoothed empiri-
cal likelihood and bootstraped empirical P-P and Q-Q processes. Empirical
likelihood, introduced by Owen, [14] [15] has nice properties, especially for
confidence intervals (see, for example, [7], [16]). It does not involve any pre-
scribed assumptions about the shape of intervals, which is fully determined by
the data. Moreover it is Bartlett correctable in most cases. Thus a simple
correction for scale improves the coverage accuracy from order n−1 to n−2,
where n denotes the sample size. For the mean difference corresponding to the
testing problem (1.1) the Bartlett correction has been investigated in [12] and
[13]. For two-sample problems in a general framework the empirical likelihood
method has been introduced by [18] and [19].

The order of quantile and distribution function in definition of P-P and Q-Q
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plots make them quite different (see [5] and [9]). If Y is a linear function of
X then its Q-Q plot will still be linear but with possible changed location and
slope. This property is not shared by P-P plots. On the other hand the range
of a P-P plot is always the same - a rectangle with the diagonal connecting
(0, 0) and (1, 1) which makes them comparable. When there is a positive or
negative shift between two samples, the P-P plot is above or below the diagonal.
This indicates a positive or negative treatment effect. According to Holmgren
[9] P-P plots, among other advantages, are to be preferred when outliers are
present.

The paper is organized as follows. In Section 2 the two-sample empirical
likelihood method is introduced. Furthermore its smoothed version is defined
in Section 3. Empirical P-P and Q-Q plot processes are discussed in Section
4. Section 5 deals with the construction of simultaneous confidence bands for
P-P and Q-Q plot functions. Finally, empirical coverage accuracy using Monte
Carlo simulations is analyzed in Section 6, where also a real data example is
considered.

2 Two-sample empirical likelihood method

Assume we wish to make statistical inference about the function ∆ := ∆(t) on
some interval T . Let θ0 be some univariate parameter associated with one of the
distributions F1 or F2. When dealing with the empirical likelihood method, it is
common to assume that information about true parameters θ0, ∆0 is available
in the form

EF1
w1(X, θ0, ∆0, t) = 0, (2.1)

EF2
w2(Y, θ0, ∆0, t) = 0. (2.2)

This setup was introduced in [19] allowing to deal also with functions such as
P-P and Q-Q plots. If ∆0 = θ1−θ0, where θ0 and θ1 are univariate parameters
associated with F1 and F2 respectively, we have exactly the setup of [18] allow-
ing to make inference for two-sample parameter differences. For example, for
the testing problem of two expectation equality (1.1) choose θ0 =

∫

xdF1(x)
and ∆0 =

∫

ydF2(y) −
∫

xdF1(x). We obtain (2.1) and (2.2) by taking

w1(X, θ0, ∆0, t) = X − θ0, w2(Y, θ0, ∆0, t) = Y − θ0 − ∆0.

In the following we define the profile empirical likelihood ratio function

R(∆, θ) = sup
θ,p,q

n1
∏

i=1

(n1pi)

n2
∏

j=1

(n2qj), (2.3)

where p = (p1, . . . , pn1
) and q = (q1, . . . , qn2

) are subject to restrictions

pi ≥ 0,

n1
∑

i=1

pi = 1,

n1
∑

i=1

piw1(Xi, θ, ∆, t) = 0, (2.4)
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qj ≥ 0,

n2
∑

j=1

qj = 1,

n2
∑

j=1

qjw2(Yj , θ, ∆, t) = 0. (2.5)

A unique solution of (2.3) exists, provided that 0 is inside the convex hull of the
points w1(Xi, θ, ∆, t)’s and the convex hull of the w2(Yj , θ, ∆, t)’s. The maxi-
mum may be found using the standard Lagrange multipliers method (see for

example [16], [19]). Finally, define an estimator θ̂(∆) of the nuisance parameter
θ by minimizing (2.3) over θ for a fixed value of ∆:

θ̂(∆) = argmin
θ

{−2 logR(∆, θ)}. (2.6)

Theorem 1. Under some standard smoothness assumptions on functions w1,
w2 (see [18], [17])

−2 logR(∆0, θ̂) →d χ2
1, (2.7)

as n1, n2 → ∞, where →d denotes the convergence in distribution.

Proof. The same as in [18] the proof of Theorem 1.

The pointwise empirical likelihood confidence interval for each fixed t ∈ T for
∆ has the following form ∆ : {R(∆, θ̂) > c} for the true ∆0, where θ̂ is such as
in (2.6). The constant c can be calibrated using Theorem 1.

3 Smoothed empirical likelihood for P-P and Q-Q plots

The empirical likelihood method introduced in Section 2 is suitable also for
P-P and Q-Q plots. This has not been realized in [18] (for more details see
[19], Section 5.3). Let θ0 = F−1

2 (t) and ∆0 = F1(F
−1
2 (t)). In this case forms

(2.1) and (2.2) are satisfied by choosing

w1(X, θ0, ∆0, t) = I{X≤θ0} − ∆0, w2(Y, θ0, ∆0, t) = I{Y ≤θ0} − t.

Furthermore, for Q-Q plots choose θ0 = F2(t), ∆0 = F−1
1 (F2(t)) and

w1(X, θ0, ∆0, t) = I{X≤∆0} − θ0, w2(Y, θ0, ∆0, t) = I{Y ≤t} − θ0.

Due to the indicator functions w1 and w2 are nonsmooth. In order to apply
Theorem 1 we propose to use the smoothed empirical likelihood method.

The smoothed empirical likelihood method for quantile function in one sam-
ple case has been first introduced in [1]. It appears that by appropriate smooth-
ing of estimating functions w1, w2 the coverage accuracy may be improved from
order n−1/2 to n−1. Some recent papers have dealt with the smoothed method
in the two-sample case. For example, [4] deals with receiver operating char-
acteristic (ROC) curves, in [2] two-sample goodness of fit testing problem is
considered and finally [3] is devoted to copulas using the smoothed empirical
likelihood method.
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For j = 1, 2 define Hj(t) =
∫

u≤t Kj(u)du, where Kj is a kernel function

(typically a density function). Further let Hbj
(t) = Hj(t/bj), where b1 = b1(n1)

and b2 = b2(n2) are bandwidth sequences, converging to zero as sample sizes
n1, n2 grow to infinity.
Let p = (p1, . . . , pn1

) and q = (q1, . . . , qn2
) be two vectors consisting of non-

negative numbers adding to one. Define further the estimators

F̂b1,p(x) =

n1
∑

i=1

piHb1(x − Xi) and F̂b2,q(y) =

n2
∑

j=1

qjHb2(y − Yj). (3.1)

For this setting we define the profile two-sample smoothed empirical likelihood
ratio function for ∆ as

R(sm)(∆, θ) = sup
p,q

n1
∏

i=1

(n1pi)

n2
∏

j=1

(n2qj), (3.2)

with the smoothed estimating equation for P-P plots

w1(Xi, θ0, ∆0, t) = Hb1(θ0 − Xi) − ∆0, w2(Yj , θ0, ∆0, t) = Hb2(θ0 − Yj) − t

and for Q-Q plots

w1(Xi, θ0, ∆0, t) = Hb1(∆0 − Xi) − θ0, w2(Yj , θ0, ∆0, t) = Hb2(t − Yj) − θ0.

Proposition 1. Theorem 1 holds for the function R(sm)(∆0, θ̂) and the P-P
and Q-Q plots defined above by the smoothed empirical likelihood estimating
equations.

Although Theorem 1 holds, theoretically one should have to find the correct
asymptotic rates of the bandwidths b1 and b2. For ROC curves this has been
done in [4], for general structural relationship models in [19]. Instead by simu-
lation study choosing different bandwidth sequences depending on sample sizes
we will show that the two-sample empirical likelihood method is comparable
to other well known methods.

4 Empirical P-P and Q-Q processes

Let us denote the empirical distribution functions of the X and Y samples by
F1n1

(x) = n−1
1

∑n1

i=1 I(Xi ≤ x) and F2n2
(x) = n−1

2

∑n2

j=1 I(Yj ≤ y), respec-

tively. The empirical quantile function is defined as F−1
1n1

(t) = inf{x : Fn1
(x) ≥

t} .The classical Kolmogorov-Smirnov two-sample statistic for the hypothesis
(1.2) is defined as follows

KS =

√

n1n2

n1 + n2
sup

−∞<x<+∞
|F1n1

(x) − F2n2
(x)|, (4.1)

Under the null hypothesis

KS →d sup
0<t<1

|B(t)|,

Math. Model. Anal., X(x):1–12, 20xx.
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where B(t) is a Brownian bridge process. The KS statistic is a typical example
from the empirical process theory which is a separate branch in mathematical
statistics. Hsieh and Turnbull [11] in Theorem 2.2 showed that there exists
a probability space on which one can define two independent sequences of

Brownian bridges B
(n1)
1 and B

(n1)
2 such that

Pn1,n2
= sup

0<t<1

√
n1|(F1n1

F−1
2n2

(t) − F1F
−1
2 (t))| →d

sup
0<t<1

|(B(n1)
1 (F1F

−1
2 (t))) +

√
λ

f1(F
−1
2 (t))

f2(F
−1
2 (t))

B
(n2)
2 (t))|, (4.2)

where n1/n2 → λ as n1, n2 → ∞ and Pn1,n2
denotes the empirical P-P process.

For the empirical Q-Q plot process similar result holds,

Qn1,n2
= sup

−∞<x<∞

√
n1|f1(F

−1
1 F2(x))(F−1

1n1
F2n2

(x) − F−1
1 F2(x))| →d

sup
0<t<1

|(B(n1)
1 (F2(x)) +

√
λB

(n2)
2 (F2(x)))|. (4.3)

It is impossible to construct simultaneous bands from (4.2) and (4.3) because
the limiting distribution contains the unknown functions f1, f2 and F1, F2 which
have to be estimated. Thus the asymptotic behavior will heavily depend on
those estimators. As usual in such situations resampling methods have to be
used. In [10] the smoothed bootstrap method was used to construct simul-
taneous bands for ROC curve defined as 1 − F1(F

−1
2 (1 − t)) for 0 ≤ t ≤ 1.

Clearly all their results hold also for P-P plots, which can be seen as a simple
transformation from the ROC curve function.

Define the standard smoothed nonparametric estimators for unknown dis-
tribution functions F1 and F2 as folows

F̂1n1
(x) =

1

n1

n1
∑

i=1

Hb1(x − Xi) and F̂2n2
(y) =

1

n2

n2
∑

j=1

Hb2(y − Yj).

with Hbj
(t) the same as in (3.1).

Let X∗
1 , X∗

2 , . . . , X∗
n1

and Y ∗
1 , Y ∗

2 , . . . , Y ∗
n2

be two independent random sam-

ples from F̂1n1
and F̂2n2

, respectively. The empirical distributions of X and Y
are denoted by F ∗

1n1
(x) = n−1

1

∑n1

i=1 I(X∗
i ≤ x) and F ∗

2n2
(y) = n−1

2

∑n2

j=1 I(Y ∗
j ≤

y). From Theorem 2.1 in [10] follows that for a P-P plot process Pn1,n2
with

probability 1 holds

sup
x

∣

∣

∣

∣

P

(

sup
0<t<1

√
n1|(F1n1

F−1
2n2

(t) − F1F
−1
2 (t))| ≤ x

)

− P ∗

(

sup
0<t<1

|√n1(F
∗
1n1

F ∗−1
2n2

(t) − F1n1
F−1

2n2
(t)| ≤ x

)
∣

∣

∣

∣

→ 0 (4.4)

as n1, n2 → ∞, where conditional probabilities given initial data are denoted
by P ∗. Similar conclusion can be done for Q-Q plot processes.



Two-sample problems in statistical data modelling 7

5 Simultaneous confidence bands

Pointwise confidence intervals for P-P or Q-Q plots allow to make inference only
for these functions in a fixed point. That is the same as to construct confidence
intervals for some single parameter of interest, such as mean of the sample. It
is clearly preferable to know with, say, 95% confidence where the whole true
curve lies. However, using statistical packages such as R it is possible only
to add pointwise intervals for Q-Q plots, for example. We will consider two
methods for the construction of simultaneous bands.

To construct a simultaneous confidence region for ∆ defined in Section 2
over some interval (a, b), we will use the bootstrap confidence region without
losing the advantages of the automated shape-determination by the empirical
likelihood method. It means that we use empirical likelihood to set the shape
of the confidence bands and use the bootstrap to set the level. This method is
introduced in [6] and has been also used in [4] and [19].

First method. Define the maximum smoothed empirical likelihood esti-
mator ∆̂,

∆̂ = argmax
∆

R(sm)(∆, θ). (5.1)

First choose an appropriate bootstrap critical value c∗ such that

P (−2 logR∗(sm)(∆̂, θ̂) ≤ c∗ for a ≤ t ≤ b} = 1 − α,

where θ̂ = θ(∆̂), ∆̂ = ∆̂(t) is defined in (5.1) and R∗(sm) is the likelihood ratio
function defined in (3.2) calculated for bootstraped resamples X∗

1 , X∗
2 , . . . , X∗

n1

and Y ∗
1 , Y ∗

2 , . . . , Y ∗
n2

. Second, use c∗ for the pointwise confidence bands from
Theorem 1. Hence the bootstrap confidence band C consists of those curves
R(sm)(·, θ̂) such that the corresponding log likelihood ratio statistic stays below
c∗ over the interval (a, b), that is,

C = {−2 logR(sm)(·, θ̂) : −2 logR(sm)(∆, θ̂) ≤ c∗ for a ≤ t ≤ b}.

Note that the estimator ∆̂ is based on the initial samples X1, . . . , Xn1
and

Y1, . . . , Yn2
.

Second method. For P-P plots equation (4.4) provides the bootstrap
approximation of the critical value c∗2 such that

P (F1n1
F−1

2n2
(t) − c∗2n

−1/2
1 ≤ F1F

−1
2 (t))

≤ F1n1
F−1

2n2
(t) + c∗2n

−1/2
1 , a ≤ t ≤ b) → 1 − α, (5.2)

as n1, n2 → ∞ on some interval 0 < a < b < 1 with 0 < α < 1. For Q-Q plot
processes a similar result is true.

6 Simulation study and applications

We have implemented the generalized two-sample empirical likelihood method
proposed by Valeinis [19] in statistical package R. Program codes will be avail-
able on the author’s website (http : //home.lanet.lv/ valeinis/index.html).

Math. Model. Anal., X(x):1–12, 20xx.
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Table 1 shows comparative 95% coverage accuracies using the empirical
likelihood method, four standard kinds of bootstrap, and the two-sample t-test.
First we compare two normal distributions N(0, 1) and N(1, 1) for which, as
expected, the t-test is better among other methods. Note, that both empirical
likelihood and the various bootstrap procedures produce acceptable coverage
accuracies, with the empirical likelihood having a slight edge. The coverage
accuracies using all methods quickly converges towards 0.95 in this case.

Table 1. 95% coverage accuracies for two-sample mean differences µ2 − µ1, comparing
empirical likelihood (E.L.), two-sample t-test, four bootstrap methods (B.N. - normal
bootstrap; B.B. - basic bootstrap; B.P. - percentile bootstrap; B.A. - bias-corrected

bootstrap). The coverage accuracies are based on 10,000 pseudorandom samples from F1

and F2 for each combination of sample sizes n1 and n2.

F1, F2 n1 n2 E.L. B.N. B.B. B.P. B.A. t-test

F1 = N(0, 1)
F2 = N(1, 1)

15 15 0.933 0.919 0.922 0.920 0.917 0.951
20 20 0.940 0.930 0.931 0.930 0.928 0.952
30 30 0.944 0.934 0.936 0.935 0.934 0.950
50 50 0.947 0.940 0.941 0.941 0.940 0.951
100 100 0.952 0.949 0.951 0.952 0.949 0.954
20 30 0.939 0.937 0.937 0.937 0.937 0.948
30 20 0.940 0.935 0.938 0.934 0.934 0.951
20 50 0.937 0.936 0.937 0.935 0.934 0.950
50 20 0.940 0.934 0.937 0.937 0.934 0.951

F1 = LogN(0, 0.5)
F1 = LogN(0, 0.5)

15 15 0.922 0.935 0.941 0.927 0.911 0.958
20 20 0.923 0.934 0.941 0.927 0.908 0.954
30 30 0.937 0.940 0.949 0.940 0.925 0.955
50 50 0.940 0.941 0.947 0.939 0.928 0.950
100 100 0.945 0.945 0.950 0.943 0.937 0.949
20 30 0.935 0.941 0.949 0.938 0.925 0.956
30 20 0.927 0.935 0.942 0.932 0.915 0.950
20 50 0.930 0.934 0.936 0.931 0.919 0.945
50 20 0.932 0.935 0.941 0.934 0.920 0.949

F1 = LogN(0, 1)
F1 = LogN(0, 1)

15 15 0.878 0.941 0.958 0.908 0.855 0.969
20 20 0.892 0.947 0.961 0.921 0.868 0.966
30 30 0.911 0.950 0.962 0.929 0.885 0.963
50 50 0.919 0.948 0.961 0.933 0.897 0.956
100 100 0.931 0.950 0.961 0.938 0.910 0.955
20 30 0.902 0.947 0.963 0.924 0.877 0.963
30 20 0.903 0.944 0.957 0.924 0.874 0.959
20 50 0.890 0.923 0.938 0.907 0.864 0.937
50 20 0.895 0.924 0.938 0.909 0.873 0.939

F1 = LogN(0, 2)
F1 = LogN(0, 2)

15 15 0.767 0.967 0.983 0.899 0.780 0.986
20 20 0.784 0.967 0.983 0.902 0.786 0.983
30 30 0.811 0.969 0.984 0.906 0.796 0.982
50 50 0.833 0.970 0.984 0.916 0.816 0.977
100 100 0.858 0.967 0.982 0.921 0.828 0.973
20 30 0.788 0.963 0.980 0.896 0.780 0.978
30 20 0.790 0.963 0.980 0.897 0.784 0.976
20 50 0.796 0.945 0.965 0.877 0.777 0.956
50 20 0.792 0.943 0.965 0.873 0.770 0.954

Further we examine a family of log-normal distributions log N(µ, σ2) with



Two-sample problems in statistical data modelling 9

increasing values of parameter σ2 and fixed µ = 0. Due to the asymmetry,
log-normal distributions are known to be problematic for the t-test. We find,
that while empirical likelihood performs adequately, converging towards 0.95
from below, the t-test seems to converge very slowly and lies in fact much above
the expected value. Interestingly, the same is true for the basic and normal
bootstrap methods, which, in fact, show no tendency to converge downwards
to 0.95. For all methods when σ2 increases much more observations are needed
to have reasonable results.

Finally, we consider the wet drilling versus dry drilling data from [8]. In
this data example wet drilling times (where cuttings are flushed with water)
are compared to dry drilling times (the cuttings are flushed with compressed
air). The times are given in 1/100 of a minute, for a 5 feet segment. Six
series of drilling times for 5 feet segments were given for six drilled holes, three
of each wet drilled and three dry drilled. For our example we computed the
average segment times for each drilling depth with sample sizes n1 = n2 = 80.
The question is whether dry drilling (let µd denote the expected dry drilling
time) is faster then wet drilling (where µw denotes the expected wet drilling
time). Simple boxplots suggesting slightly faster dry drilling times are shown
in Figure 1.

Dry drilling Wet drilling
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Figure 1. Box-plots of the drilling data samples.

The estimated mean dry and wet drilling times are 805.53 and 943.81, re-
spectively, giving an estimate for the mean difference µw − µd equal to 138.3.
This strongly indicates that both samples differ from each other. To find out
whether this difference is statistically significant let us further test hypothesis
(1.1) for the equality of sample means. This can be done either using the two-
sample t-test, or by the empirical log-likelihood ratio statistic (2.7). Both tests
reject the null hypothesis with a p-value of < 0.0001.

Next, let us construct the 95% confidence interval for the parameter µw −
µd using the t-test, the empirical log-likelihood ratio statistic (2.7) and some
standard bootstrap methods. The results are summarized in Table 2. We
conclude that all methods produce similar intervals in our case. Confidence
intervals not only allow to assess the range of likely values of the difference of
means with a given confidence but also provide hypothesis testing for a given
significance level.

Math. Model. Anal., X(x):1–12, 20xx.
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Next approach is to test hypothesis (1.2) about the equality of the sample
distributions F1 and F2, which is stronger than hypotheses (1.1) already dis-
cussed before. If the two mean values µ1 and µ2 differ also the null hypothesis
of F1 and F2 equality should be rejected, whereas there could be significant
differences in the structure of the data, still the mean values being equal. The
Kolmogorov-Smirnov test (4.1) rejects H0 with a p-value < 0.0001.

Table 2. 95% confidence interval for µw − µd calculated using the empirical likelihood
method (E.L.); the two-sample t-test and four kinds of bootstrap (B.N. - normal bootstrap;

B.B. - basic bootstrap; B.P. - percentile bootstrap; B.A. - bias-corrected bootstrap).

E.L. t-test B.N. B.B. B.P. B.A.

(84.1, 180.6) (94.6, 181.9) (96.3, 181.5) (95.5, 183.5) (95.1, 181) (93, 180.9)

Finally, we offer a graphical assessment of the distribution relationships
using P-P and Q-Q plots, shown in Figure 2. Coupled with simultaneous
confidence bands, theses graphs also allow for a graphical test of hypothesis
(1.2). The graphs show both the empirical versions of the plots, and their
smoothed counterparts, calculated using the empirical likelihood method. 95%
simultaneous confidence bands were constructed using both methods described
in Section 5. The diagonal y = x does not fit into the confidence bands. Thus
both plots allow to reject H0.
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Figure 2. Q-Q (a) and P-P (b) plots of dry drilling versus wet drilling. The plots show the
empirical versions together with the smoothed empirical likelihood estimates. Two types of
simultaneous 95% confidence bands were constructed using empirical likelihood and empirical
processes combined with the bootstrap methods described in Section 5.

A major advantage of the graphical testing method is that the graphs show
more details of the distribution differences. For example, from the P-P plot
graph we can see that dry drilling is uniformly faster then wet drilling, because
the graph lies above the diagonal.

To construct simultaneous confidence bands using both empirical processes
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and empirical likelihood method one needs to find a suitable bandwidth pa-
rameter. Since both distributions of dry and wet drilling were fairly normal,
we used the standard rule-of-thumb procedure to select the smoothing param-
eter. Throughout, 10,000 bootstrap replications were performed. Using the
smoothed empirical likelihood method bands the selected bootstrap critical
values c∗ for the graphs were 7.55 and 7.59 for the Q-Q and the P-P plots re-
spectively. Furthermore using the second method (5.2) the bootstraped critical
values were found to be 2.02 and 1.82.

Note, that while for the Q-Q plot the bands constructed using empirical
processes are narrower in the middle, they tend to go to infinity at both ends
of the graph. This is a consequence of the density function involved in the
definition of the empirical Q-Q process (4.3). This might indicate that the use
of empirical likelihood could be preferable here, since in many cases the most
‘interesting’ data lies near the edges of the graph. For the P-P plot, again
empirical likelihood seems preferable, since the bands constructed using it are
narrower on the whole graph. A drawback of using empirical likelihood method
is the following. In order to calculate bootstraped critical values rather large
samples are needed. Secondly, we have to cut ends of both P-P and Q-Q plots,
which has to be considered by each data example separately.

Our findings demonstrate that methods based on empirical likelihood are
comparable or in some cases even better than established methods. A further
investigation of both practical and simulated data examples would be of interest
here. Moreover, the advantages of P-P plots over Q-Q plots attributed by
Holmgren [9] could be analysed further in the context of graphical two-sample
tests.
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