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1 Introduction

Let (Xt)t∈Z be a real-valued strictly stationary process defined on a probability
space (Ω,F , P ). For any two σ-fieldsA and B ⊂ F define the following measure
of dependence

α(A,B) := sup |P (A ∩B)− P (A)P (B)|,

where this latter sup is taken over all A ∈ A and B ∈ B. For −∞ ≤ J ≤ L ≤ ∞
define FLJ := σ(Xk, J ≤ k ≤ L). (Xt)t∈Z is called strongly mixing or α-mixing
(see e.g. Bradley (2002)) if α(n) := α(F 0

−∞, F
∞
n )→ 0 when n→∞.

Assume that an α-mixing strictly stationary process (Xt)t∈Z has marginal
distribution function F . We want to test the following simple hypothesis:

H0 : F = U [0, 1] versus H1 : F 6= U [0, 1],

where U [0, 1] denotes the uniform distribution on the interval [0, 1]. Note that
testingH0 : F = F0 for some general continuous distribution F0 can be reduced
to this situation by transforming the data to F0(Xt), t ∈ Z.

The problem of testing the goodness-of-fit of a parametric family is a clas-
sical theme in statistics. During the last decades the asymptotical power and
various concepts of efficiency for such well known goodness-of-fit tests as the
Kolmogorov-Smirnov or the Cramer-von Mises tests have been analyzed and
it has been concluded that these tests do not behave like well-balanced om-
nibus tests for nonparametric alternatives. There are only very few directions
of deviations from the null hypothesis for which these tests are of reasonable
finite sample size power. In contrast, smooth goodness-of-fit tests obey much
better overall performance against a broad range of alternatives (see Rayner
and Best (1989); Inglot et al. (1997) among many others). The above results
renewed interest in a class of tests already introduced by Neyman (1937).

The topic of goodness-of-fit tests for dependent data has been less inten-
sively investigated in the past. Here follows a brief survey. Gasser (1975) ex-
plored the χ2 test for correlated data by simulations. Moore (1982) and Gleser
and Moore (1983) analyzed the χ2 test of Pearson under the positive depen-
dency. They concluded that the null hypothesis is rejected too often. The same
conclusion holds for tests based on the empirical distribution function, that
is, positive dependence is confounded with lack of fit. Later Chanda (1981,
1999) analyzed for the Pearson test the effects of dependence for observations
generated by linear, bilinear and Volterra processes.

For specific but important dependence structures such as ARMA processes
there is much more literature on goodness-of-fit tests. For some survey of
results see Ducharme and Micheaux (2004) and the references therein. In this
work a smooth test of normality for the innovations of an ARMA process has
been established using a data driven procedure introduced by Ledwina (1994).

Some results have been recently obtained for a stationary α-mixing pro-
cesses (Xt)t∈Z by Ignaccolo (2004). This extends the tests associated with
projection density estimators considered by Bosq (1989, 2002). In particular
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the χ2 test of Pearson and the Neyman smooth test for a fixed number of com-
ponents follow from this general framework. Neumann and Paparoditis (2000)
consider tests based on the Bickel-Rosenblatt statistic under an exponential
α-mixing rate.

Similarly as Ledwina (1994) and Inglot and Ledwina (1996) among others
we establish a simple data-driven version of the Neyman smooth goodness-
of-fit test for testing uniformity of the marginals of α-mixing processes. In
principle we extend Ignaccolo’s (2004) result making it data driven in the
following way.

For testing H0 Neyman’s smooth test statistic has the following form

Rk =
k∑
j=1

{
n−

1
2

n∑
i=1

φj(Xi)
}2

, k = 1, 2, . . . , (1)

where φ0, φ1, . . ., is an orthonormal system in L2[0, 1] with φ0(x) = 1. Fur-
ther on we restrict {φj} to be the orthonormal Legendre polynomials on [0, 1]
(for the general case see Remark 2), sometimes denoted as shifted Legendre
polynomials (see Abramowitz and Stegun (1972)). These polynomials can be
defined recursively and are, for j = 0, 1, 2, 3, 4,
φ0(x) = 1,
φ1(x) =

√
12(x− 1/2),

φ2(x) =
√

5(6(x− 1/2)2 − 1/2),
φ3(x) =

√
7(20(x− 1/2)3 − 3(x− 1/2)),

φ4(x) = 210(x− 1/2)4 − 45(x− 1/2)2 + 9/8.

For a strictly stationary α-mixing process (Xt)t∈Z under some natural con-
ditions (for our purposes we will need only a subset of those conditions, see
Section 3) Ignaccolo (2004) has shown in Theorem 3.1 that under H0

Rk →d λ1Y1 + λ2Y2 + . . .+ λkYk, (2)

where Yj ∼ χ2
1 are independent r.v.’s and the coefficients λj are the eigenvalues

of the matrix with elements

σjl = E0(φj(X1)φl(X1))+
∞∑
i=2

E0(φj(X1)φl(Xi))+
∞∑
i=2

E0(φj(Xi)φl(X1)) (3)

for 1 ≤ j, l ≤ k. Let E0 and V ar0 denote further on the expectation and
variance under H0, i.e. with respect to the Lebesque measure on [0, 1]. Ignac-
colo’s (2004) test is based on Rk and requires to estimate all eigenvalues in (2).
This may cause, however, some practical difficulties because estimation of the
eigenvalues can be numerically difficult and instable, in particular when several
eigenvalues are close to each other (see Eaton and Tyler (1991)). Moreover, for
the test proposed by Neumann and Paparoditis (2000) bandwidth selection is
required, which is well known to be problematic already in the independent
case.
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For convenience we now introduce a rescaled version of the Neyman statis-
tic (1)

Nk = (12σ2)−1Rk = (12σ2)−1
k∑
j=1

{
n−

1
2

n∑
i=1

φj(Xi)
}2

(4)

with

σ2 =
+∞∑
t=−∞

Cov(X0, Xt). (5)

Roughly speaking, the factor (12σ2)−1 adjusts Rk for the additional depen-
dency, such that under H0 the new statistic Nk has the same limiting distri-
bution as Rk in the independent case. In fact, then

σ11 =
∑
t∈Z

E(φ1(X0)φ1(Xt)) = 12
∑
t∈Z

Cov(X0, Xt) = 12σ2. (6)

The Neyman test Rk has regained its importance after Ledwina (1994) pro-
posed a data driven selection rule for the choice of a proper k in (1) even if
k has to be chosen among a (possibly) infinite number of models 1, . . . , d(n),
where d(n)→∞ as n→∞. Based on ideas of Ledwina, Kallenberg and Inglot
in this paper we propose the use a modified selection rule based on Nk result-
ing in a very simple procedure, which adapts automatically to the dependent
case. This is the main contribution of this paper.

In addition to the case of independent observations, for the implementation
of our test only σ2 in (5) has to be estimated additionally. Hence, the resulting
test is surprisingly simple. The Neyman smooth test statistic for α-mixing
data is only a multiple of the test statistic in the independent case with a
proper estimate of σ2. As a consequence, in situations where the assumption
of independence is questionable we simply suggest to adjust the test statistic
by an estimate of σ2 and subsequent to proceed as in the independent case.

Our results can also be regarded as a kind of robustness analysis towards
dependent data of the data driven Neyman smooth test for the i.i.d. case.
First note that Var0(X0) = 1/12. If 12σ2 > 1 (positive dependence) then the
Neyman smooth test will reject too often, otherwise (negative dependence) it
will be conservative.

To summarize, our main goal is to show consistency of the rescaled Ney-
man test using modified Schwarz’s selection rule in the α-mixing case, thus
extending the result of Ignaccolo (2004). Simulations are performed for α-
mixing processes generated from some ARMA processes, in particular AR(1)
processes, which under some conditions have the α-mixing property with ex-
ponential mixing rate (see e.g. Bradley (1986), p. 179). We would like to stress
that various other important classes of processes such as GARCH and bilin-
ear processes also obey the α-mixing property (see Mokkadem (1990)). Our
major finding is, that for positively correlated observations the proposed test
works quite well. A Monte Carlo study reveals the finite sample properties
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even better than for the independent case. In contrast, for negatively corre-
lated observations, estimation of the variance (5) causes severe problems and
the test cannot be recommended.

The paper is organized as follows. In Section 2 the smooth goodness-of-fit
test statistic for α-mixing processes and the corresponding model selection rule
is discussed. Section 3 is devoted to technical assumptions and consistency. A
brief simulation study on critical values, level and power is performed in Sec-
tion 4. In Section 5 we apply our approach to the so-called historical simulation
of implied option volatilities, a commonly method employed by banks to mea-
sure the market risk of their trading portfolio. Our analysis reveals the foreign
exchange implied volatilities EUR-GBP and EUR-USD as nearly uncorrelated
and the results of our test coincide with the test based on Rk for the indepen-
dent case. For USD and EUR swaption volatilities we found serial dependency,
and we rejected uniformity of the volatilities based on Nk (and also on Rk).
Hence this seems to be an indication for insufficient modeling of the implied
volatilities by a nonparametric heteroscedastic dynamical system.

All proofs are deferred to the Appendix.

2 Test statistic

As mentioned in the Introduction for a strictly stationary α-mixing process
(Xt)t∈Z we suggest to use the test statistic Nk defined in (4) with σ2 in (5),
which is a rescaled version of Neyman’s smooth test for independent data, i.e.
Nk = (12σ2)−1Rk.

We will show that under H0 the Schwarz’s data driven selection rule selects
the dimension 1, thus the statistic Nk reduces to N1. Moreover, if k = 1 the
eigenvalue λ1 is equal to (6). Therefore Nk under H0 has the same limiting
distribution as in the independent case, which is the χ2

1 distribution.
For fixed k from (2) follows that under H0,

Nk →d

(
λ1

σ11

)
Y1 +

(
λ2

σ11

)
Y2 + . . .+

(
λk
σ11

)
Yk. (7)

Ignaccolo (2004) has derived the convergence rates of Rk = 12σ2Nk to the
limiting distribution for fixed k depending on rates of mixing coefficients α(n).
Naturally if σ2 is finite we have the same asymptotic rates.

Remark 1 In the case of i.i.d. r.v’s one has 12σ2 = 1 under H0, and we get
the statistic introduced by Neyman (1937). It follows that if the model is mis-
specified and if 1/(12σ2) < 1, i.e. σ2 > 1/12, this results in a higher rejection
rate. If σ2 < 1/12 we get a conservative test. Similarly as for Pearson’s test
(see e.g. Moore (1982); Gleser and Moore (1983)), we find again that positive
dependence of the data will lead to an increase of the actual level of the Ney-
man smooth test in the i.i.d. case. Therefore, in situations where independence
might be a questionable assumption our proposal is simply to multiply the test
statistic by 1/(12σ̂2), where σ̂2 denotes an appropriate estimator of σ2 in (5),
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and then to proceed as in the independent case. We will show in the following
that this will yield a consistent test, in particular when the dimension k is
automatically selected from the data properly.

Remark 2 It is easy to generalize our results to an arbitrary orthonormal sys-
tem ϕ0, ϕ1, . . . in L2[0, 1] with ϕ0 ≡ 1. In order to present the smooth test in
this more general framework write ϕ1(X) = (g(X)−E0g(X))/

√
V ar0g(X) for

some function g, where E0 and V ar0 denote the expectation and the variance
under the null hypothesis, respectively. The smooth test statistic is now

(σ2/V ar0g(X))−1
k∑
j=1

{
n−

1
2

n∑
i=1

ϕj(Xi)
}2

,

where σ2 =
∑+∞
t=−∞Cov(g(X0), g(Xt)). For the system of Legendre polynomi-

als g(x) = x, and we get the test statistic Nk in (4). For the frequently used
cosine system, given by ϕj(x) =

√
2 cos(jπx) we have g(x) =

√
2 cos(πx) and

V ar0g(X) = 1. Note that the α-mixing property will not be affected by the
choice of the orthogonal system because under measurable transformations the
α-mixing property will be maintained with the dependence coefficients α(n)
being no greater than the corresponding ones for (Xt)t∈Z (see Bradley (1986),
p. 170).

Finally, to construct an omnibus test statistic we have to choose a model
among those corresponding to k = 1, . . . , d(n) for some d(n)→∞ as n→∞.
There is a vast literature on the proper choice of the dimension k in the
independent case (see e.g. Kallenberg (2002)). Ledwina (1994) introduced a
consistent data driven procedure using Schwarz’s (1978) selection rule based
on an expansion of the maximum likelihood function. For our purposes we
will use a modification of Schwarz’s rule introduced by Kallenberg and Led-
wina (1997a) and analyzed also by Kallenberg and Ledwina (1997b), Inglot
et al. (1997) and Janic-Wroblewska and Ledwina (2000). First, the modified
Schwarz’s selection rule is applied to select a suitable dimension k, i.e.

Smod = min{k : 1 ≤ k ≤ d(n), Rk − k log n
≥ Rj − j log n, j = 1, . . . , d(n)}, (8)

where d(n) denotes an upper bound of the dimension k which may tend to
infinity as n→∞. Then the test NSmod

is performed.

Remark 3 In Section 7.1 Inglot and Ledwina (1996) have shown the asymp-
totic equivalence of Schwarz’s rule based on the penalized maximum likelihood
function and Smod. In the case of weak dependence such as a mixing property,
it can be expected that the asymptotic behavior of Smod will be the same as in
the independent case. The behavior of sums of random variables from mixing
sequences in general is similar to the independent case (central limit type the-
orems, large deviation results can be proved using the ”blocking technique”,
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which basically allows to transfer the respective results from the independent
case (see, for example, Bosq (1989)).

Consider now the following selection rule replacing the Neyman statistic
Rk with Nk in (8)

Smod2 = min{k : 1 ≤ k ≤ d(n), Nk − k log n
≥ Nj − j log n, j = 1, . . . , d(n)}. (9)

Evidently in the case of positive dependence (σ2 > 1/12) Smod2 will have a
bigger concentration on the dimension 1 under H0 (see Theorem 1). For nega-
tive dependence the converse is true. Therefore, the use of Smod2, taking into
account dependence, is recommended if prior knowledge of positive correlation
is available (see Tables 1-2).

3 Consistency

For a strictly stationary α-mixing process (Xt)t∈Z assume the following

(A) α(n) ≤ aρn, for some a > 0, 0 < ρ < 1.
(B) E|Xt|γ < +∞ for some γ > 2.
(C) σ2 =

∑+∞
t=−∞Cov(X0, Xt) > 0.

(D) d(n) = o(log n/ log log n).

We will show that the test statistics NSmod
and NSmod2 are consistent

against essentially all alternatives of interest. The idea is that under the null
hypothesis NSmod

has a limiting χ2
1 law, while under alternatives NSmod

→∞.
The proofs are deferred to the appendix.

Let P0 denote that the marginals of (Xt)t∈Z are uniformly distributed on
[0, 1].

Theorem 1. For a strictly stationary α-mixing process (Xt)t∈Z assume (A)
and (D).

a) Then
lim
n→∞

P0(Smod = 1) = 1.

b) If we assume furthermore that (B) and (C) hold, then under H0, as
n→∞,

NSmod
→d χ

2
1.

Corollary 2. Assume σ̂2 is a consistent estimator of σ2 =
∑+∞
t=−∞ Cov(X0, Xt)

and further assume (A)-(D). Then

(12σ̂2)−1RSmod
→d χ

2
1.

Corollary 3. Under the assumptions (A)-(D) Theorem 1 and Corollary 2
hold also for the selection rule Smod2 and the test statistic NSmod2 .
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Now let us investigate the asymptotical behavior of NSmod
under alterna-

tives. Let Xt have a marginal distribution P 6= P0 on [0,1]. Suppose that

EPφ1(X) = . . . = EPφK−1(X) = 0, EPφK(X) 6= 0 (10)

for some K = K(P ) ≥ 2. Consistency of NSmod
will be proved for any alter-

native of the form (10). It will be assumed that lim
n→∞

inf d(n) ≥ K, which is

certainly the case if limn→∞ d(n) =∞, since K is fixed (see Assumption D).

Theorem 4. Let (Xt)t∈Z be a strictly stationary α-mixing process. Assume
that (A) holds. Then under any alternative P 6= P0 with K defined in (10), as
n→∞

lim
n→∞

P (Smod ≥ K) = 1 and NSmod

P→∞.

The following result follows immediately from Theorem 4.

Corollary 5. Under the assumption (A) Theorem 4 holds for the selection
rule Smod2 and the test statistic NSmod2 .

From Theorem 1 and Theorem 4 the consistency of NSmod
follows. Note

that similar result for fixed k has been shown by Ignaccolo (2004).

4 Simulation study

First we stress that only prior knowledge of the α-mixing property is needed to
perform the test NSmod

and NSmod2 introduced earlier. In this section we will
deal with data generated from some ARMA processes. In order to construct a
sequence of α-mixing r.v.’s having marginal U [0, 1] distribution under H0 we
proceed as follows:

1. First simulate X1, . . . Xn from a stationary AR(1) process {Xt}t∈Z de-
fined as

Xt − θXt−1 = Zt, (11)

where {Zt}t∈Z is an innovation process which is weakly stationary with mean
0 and autocovariance E(ZtZt+h) = σ2

Z < ∞ if h = 0 and 0 otherwise, and
|θ| ≤ 1 is the coefficient of the process. Note that for our simulation study
dealing with a simple hypothesis we do not estimate the coefficient θ, instead
fixing it in advance.

2. Then generate data from (11) with innovations Zt ∼ N(0, 1 − θ2). The
generated process {Xt}t∈Z will have marginal N(0, 1) distribution.

3. Finally, transform obtained data with Φ, where Φ denotes the N(0, 1)
cumulative distribution function. We obtain a sample X ′1, . . . , X

′
n = Φ(X1),

. . . , Φ(Xn) which is α-mixing and has U [0, 1] marginal distributions.

All these steps have been implemented with statistical software package
R. In general, it is not easy to simulate a stationary sequence with a specified
marginal distribution and autocorrelation structure (for some methods see
e.g. Song and Hsiao (1993) and references therein). Note that for this method
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the specific AR(1) covariance structure is not relevant. For our simulation
study rather it is important that the α-mixing property is maintained (see
also Remark 2).

To be precise we will test the following null hypothesis H0 : X1, . . . , Xn

have the marginal N(0, 1) distribution. This testing problem has another
equivalent interpretation, i.e. we testH0 : X ′1, . . . , X

′
n have the marginal U [0, 1]

distribution.

4.1 Critical values

The null distribution of the selection rules Smod and Smod2 has been simu-
lated for testing the hypothesis described above. In the following we summa-
rize briefly the results from a more extensive simulation study (for samples
sizes n = 50, 100 and n = 200) performed by the authors. Here we analyze the
finite-sample behavior with n = 50 and d(n) = 10. Moreover, φj ’s have been
chosen as the orthonormal Legendre polynomials on [0, 1]. To compare our
results with the case of independent data and to highlight the additional dif-
ficulties encountered with dependent data, simulations have been performed
similarly as described by Ledwina (1994), Kallenberg and Ledwina (1995a)
in the independent case. In the following Monte Carlo simulation study we
performed 10, 000 replications in each simulation scenario.

We obtain a test for uniformity using the following test statistic

Tk = (12σ̂2)−1
k∑
j=1

{
n−1/2

n∑
i=1

φj [Φ(Xi)]
}2

,

where σ̂2 is an estimator of σ2 =
∑+∞
t=−∞Cov(Φ(X0), Φ(Xt)).

An estimator for σ2 in case of an α-mixing process can be found in Ignac-
colo (2004). Basically it involves the estimation of autocovariance structure
normalized by some weight function. In case of ARMA processes we require es-
timation of the autocovariance function γ(h) := Cov(Xt+h, Xt) for all t, h ∈ Z.
For stationary processes and in particular for ARMA processes a common es-
timate for γ(h) is given by

γ̂(h) = (n− h)−1
n−h∑
t=1

(Xt − X̄)(Xt+h − X̄) for 0 ≤ h ≤ n− 1 (12)

(see Brockwell and Davis (1991), Chapter 7) and this can be used for an
estimator of σ2 in the following way. We estimate

σ̂2 = γ̂(0) + 2
q∑
j=1

γ̂(j), (13)

where q denotes the lag of the last autocovariance γ(q), which has to be esti-
mated. For simulated data X ′1, . . . , X

′
n autocovariances decay exponentially to
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zero. Thus, we suggest to truncate simply the autocovariances rounding them
to three decimal places and estimate σ2 as in (13) (for similar recommenda-
tion see also Hannan (1970)). In practice this estimator can also be used for
general α−mixing stationary processes with rapidly (exponentially) decreasing
autocovariance structures.

In the following we distinguish the case of negative and positive depen-
dence in order to highlight the difference between these two cases. We analyze
α-mixing processes generated from AR(1) processes (defined in (11)) with co-
efficients θ = 0.3,−0.3, 0.6 and θ = −0.6 (further on we denote these models
as K1, K2, K3 and K4) as described above. Here coefficients ±0.3 and ±0.6
have been chosen to represent moderate and rather strong positive (negative)
dependence, respectively. More general ARMA processes can be treated sim-
ilarly. However, it is easier to classify the positive or negative dependence in
the case of AR(1) processes.

Positive dependence. Table 1 show the simulated critical values for the
models K1, K3, respectively. The nominal level has been always chosen to be
α = 0.05 and σ2 has been estimated as described in (13). For comparison we
show also the simulated critical values of Tk for fixed k = 1, . . . , d(n).

Table 1

The critical values are expected to be close to the upper χ2
1-quantile, being

3.84 for α = 0.05. However, similarly as for the independent case (see e.g.
Kallenberg and Ledwina (1995a,b)) for finite sample sizes also higher dimen-
sions or more components have been chosen under H0. Moreover, we have
an additional effect due to the ratio λi/σ11 in (7), which will be discussed in
Section 4.3.

Negative dependence. Here we analyze the modelsK2 andK4 for sample
sizes n = 50, d(n) = 10 and nominal level α = 0.05 (see Table 2).

Table 2

For negatively correlated data the critical values are much higher than for
the positive dependence case. σ11 gets small causing the ratios λi/σ11 to be
much bigger than one in (7) (see Section 4.3 for more details). Clearly Smod is
preferable as we already noted in Remark 3. We conclude that for moderate
sample sizes in the case of strong negative dependence the test doesn’t work
well, still it can be used in the case of slight negative dependence.

4.2 Simulated power

Ledwina (1994) and Kallenberg and Ledwina (1995a) have investigated a broad
range of alternatives with different patterns of the density. Following these
authors we consider alternatives of the form

g1(x) = c(θ) exp
{ k∑
j=1

θjφj(x)
}
, (14)
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where θ = (θ1, . . . , θk)T ∈ Rk is a parameter vector and θT denotes the trans-
pose of a vector θ. Here c(θ) is a normalizing constant, such that g1 integrates
to one. We also analyze alternatives of the form

g2(x) = 1 + ρ cos(jπx). (15)

As we have seen in Section 4.1 the test does not work well in the negative
dependence case. Thus, analyzing power we consider only the case of positive
dependence. We generate data from alternatives (14) and (15) with the de-
pendence structure of model K1. In the first Monte Carlo study, we simulate
an AR(1) process with N(0, 1) marginals. Transforming the data from K1 via
Φ we obtain an α-mixing process with U [0, 1] marginals. Finally, we apply
the transformation by the inverse cumulative distribution function obtaining
the data from the densities (14) and (15). We consider the case n = 50 and
d(n) = 10 only.

For power analysis we use different simulated critical values shown in the
Table 3. The following notation will be used for critical values (when n = 50):
Cr1 - independent case with RSmod

; Cr2 - K1 model with Smod; Cr3 - K1

model with Smod2.

Table 3

Throughout for power study of NSmod
and NSmod2 we use critical values

Cr2 and Cr3, respectively. Power results for g1 are shown in Table 4. In order
to be comparable to the i.i.d. case, additionally we have simulated power for
g1 alternative in the independent case. For RSmod

we use the critical values
Cr1. Clearly in all cases Smod2 concentrates more on the dimension 1 resulting
in better test performance. In view of Theorem 4 we could expect the power
of NSmod2 to be worse in this case. However, when θ is one or two-dimensional
parameter, Smod2 is good enough to detect the alternatives under consider-
ation. Therefore NSmod2 gives better power performance than RSmod

for low
dimensional alternatives. For higher dimensional alternatives Smod gives much
better power performance.

Table 4

Finally, we have analyzed power for the alternatives g2 defined in (15)
(see Table 5). We conclude that the selection rule Smod and the test behaves
similarly as in the independent case. However, power is much worse, if we use
Smod2 and NSmod2 .

Table 5

Certainly, from this Monte Carlo study the performance of Neyman test
for the general α-mixing case can not be fully concluded. However, from this
study we conclude that in the case of positive dependence the test works well,
but can not be recommended in the negative dependence case.
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4.3 Comments on the simulation study

According to Kallenberg and Ledwina (1995b) in the independent case the
first-order result RSmod

→d χ
2
1 is often not sharp enough to obtain accurate

approximations of the null distribution for small to moderate sample sizes. For
example, when n = 50, d(n) = 10 and α = 0.05 the simulated critical value
is equal to 6.14 (see Table 3) instead of the asymptotically correct value 3.84,
i.e. the 0.95-quantile of the χ2

1 distribution. In the independent case a second-
order approximation is suggested to solve this problem (see Kallenberg and
Ledwina (1995b)), however, in the dependent case this becomes more difficult,
because the underlying dependence structure will be pertinent.

Further, a valid analysis of data with serial dependency often requires larger
data sets as for the independent case, and hence small sample corrections are
often not of major interest. Second, the simulated critical values of NSmod

and
NSmod2 will depend on the particular dependency structure of the α−mixing
process under consideration. Hence, a second order correction is not as easy
applicable as in the independent case, because it requires knowledge of the
specific dependency. We believe that a bootstrap modification (using e.g. a
block bootstrap) could yield improvements, however, we did not pursue this
issue further. Moreover, we found that for the case of positive dependence the
critical values are much closer to 3.84 (when n = 50, d(n) = 10 and α = 0.05
the simulated critical value is equal to 4.26 for the K1 model and 3.89 for the
K3 model, see Table 1). Note, that this approximation is more precise as in
the independent case.

To our knowledge negatively correlated data in the context of goodness-of-
fit tests have not been analyzed in the literature so far. As mentioned above
in the case of negative dependency the test NSmod

works bad (see Table 2).
To find a good finite sample approximation for the case of negatively corre-
lated observations is very challenging and we cannot recommend to apply our
method in this situation.

Although under the null hypothesis Smod and Smod2 select the dimension
1 asymptotically with probability one, for moderate sample sizes, the dimen-
sion 2 is also selected quite frequently (sometimes even more than 5% in our
simulation study, see Tables 1, 2). For an explanation of this fact in the in-
dependent case see Theorem 3.1 and Remark 3.1 in Kallenberg and Ledwina
(1995b).

Let us therefore investigate more detailed the situation when the selection
rules Smod or Smod2 select the dimension 2 under H0. In this case we have
k = 2 and under H0

N2 →d

(
λ1

σ11

)
Y1 +

(
λ2

σ11

)
Y2, (16)

where Y1, Y2 ∼ χ2
1 are independent r.v.’s, λ1 and λ2 are the eigenvalues of the

matrix with elements from (3) and σ11 = 12σ2 = 12
∑+∞
t=−∞Cov(X0, Xt). Now

the difference from the independent case is that we have additional multipliers
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λ1/σ11 and λ2/σ11 (which are equal to one in the independent case) which
behavior we will analyze now for Legendre polynomials.

First note that for positive definite, symmetric matrix defined through its
elements in (3) λ1 and λ2 are positive numbers equal to

λ1,2 =
(σ11 + σ22)±

√
(σ11 + σ22)2 − 4(σ11σ22 − σ2

12)
2

, (17)

where σ12 = σ21. Now let us analyze the behavior of λmax/σ11, where λmax
denotes the biggest eigenvalue of (17). Obviously an upper bound is given by

λmax
σ11

≤ 1 +
σ22

σ11
. (18)

Moreover, if σ12 � σ11 then

λmax
σ11

≈ σ11 + σ22

2σ11
+

√
(σ11 − σ22)2

4σ2
11

+
(
σ12

σ11

)2

≈ σ11 + σ22 + |σ11 − σ22|
2σ11

.

(19)

Now it follows that

{
λmax

σ11
≈ 1, if σ11 ≥ σ22

λmax

σ11
≈ σ22

σ11
if σ11 < σ22

.

Either we make a rough upper bound as in (18) or we have σ12 � σ11 and
thus (19), it is clear that the ratio σ22/σ11 should be analyzed.

Consider now

σ11 = E0(φ1(X1)2) +
∞∑
i=2

E0(φ1(X1)φ1(Xi)) +
∞∑
i=2

E0(φ1(Xi)φ1(X1)), (20)

σ22 = E0(φ2(X1)2) +
∞∑
i=2

E0(φ2(X1)φ2(Xi)) +
∞∑
i=2

E0(φ2(Xi)φ2(X1)), (21)

where φ1(y) =
√

12(y−0.5) and φ2(y) =
√

5(6(y−0.5)2−0.5) are the first two
orthonormal Legendre polynomials. Here E0 is taken with respect to U [0, 1]
distribution. First note that E0(φ1(X1)2) = E0(φ2(X1)2) = 1.

Denote each term in (20) and (21) with A11i = E0(φ1(X1)φ1(Xi)) and A21i =
E0(φ2(X1)φ2(Xi)) for i = 1, . . . , n. Thus, A11i denotes the covariance between
φ1(X1) and φ1(Xi).

Lemma 6. Let X1, . . . , Xn each have U[0, 1] marginal distribution. If and only
if

E0(X2
1X

2
i ) +

14
15
E0(X1Xi)− 2E0(X2

1Xi)−
1
90
≤ 0 (22)

then A21i ≤ A11i.

In Table 6 we show some covariances between Xi and Xi+h for the lag
h = 1, . . . , 7 and also the value of the left side of the inequality (22) for models
K3 and K4 considered earlier in our simulations (see Section 4.1).
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Table 6

For the model K3, which represents the case of positive dependence, the condi-
tion (22) is satisfied for all lags h considered in Table 6, therefore A21i ≤ A11i

for every i and also σ22 ≤ σ11. Thus, both λ1/σ11 ≤ 1 and λ2/σ11 ≤ 1 in
(16) and the critical values can only be smaller then those obtained in the
independent case by Kallenberg and Ledwina (1995b).

In the case of negative dependence (the model K4 in Table 6) the situation
is more complicated because the negative covariances and the positive ones
alternate subsequently for different lags h. However, we observe that in this
case λi/σ11 ≥ 1 in (16).

To summarize: the ratios λi/σ11 in (16) play an important role in the case
of dependent observations (in the independent case they are equal to one). In
the case of positive dependency they improve the accuracy of the first order
approximation of the null distribution. In the case of negative dependence we
have an opposite effect. When σ11 = 12σ2 becomes very small (in the case
of very strong negative dependence), the estimation of σ2 is unstable and
therefore problematic. We stress again that we do not recommend to use the
test in that case.

5 Data example

Finally, we will discuss an example drawn from the management of market
risk in investment banks, which motivated our work to a large extent. One
of the central tasks of a risk manager is to generate a forecast of the market
parameters (interest rates, stock prices etc.) that determine the market value
of a trading portfolio. Once the parameter distribution for the next business
day has been estimated, the resulting distribution of the portfolio value can be
calculated, which is the basis for quantile-based risk measures such as ”value-
at-risk”. Artzner et al. (1999) discuss the concept of coherent risk measures in
general.

One of the most popular approaches to forecasting market parameters is
the so-called historical simulation method (see Duffie and Pan (1997) for a re-
view of early literature). The key idea of this approach is to sample potential
parameter values (”scenarios”) directly from the historically observed realiza-
tions. (Banking supervisors require a time series length of one year, i.e. 254
business days, for this purpose). While this approach makes no assumptions
regarding the parameter distribution, it requires identifying i.i.d. r.v. as the
stochastic drivers of the time series. For interest rates and stock prices it is
common to consider the observed relative or absolute parameter changes as
the realizations of i.i.d. variables. The observed changes are then applied to
the current parameter value in order to generate a vector of forecasts for the
next business day. Pritsker (2001) provides a detailed discussion of this and
related historical simulation approaches.

The market parameters analyzed in the following are time series of implied
volatilities, which have been derived from exchange traded options (see Hull
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(2002) for an excellent introduction to the topic). Our data sample consists
of four different time series of implied volatilities Yt over a period of several
years: EUR and USD swaption volatilities with option maturity one year as
well as EUR/USD and EUR/GBP at-the-money foreign exchange volatilities
for maturities of one year as quoted by Reuters. For these parameters the
nature of the stochastic drivers is less evident and we employ the following
non-parametric autoregressive model (see e.g. Neumann and Kreiss (1998)) to
describe the relative change in implied volatility, Xt = Yt/Yt−1 − 1, at time t

Xt = g(Xt−1) + σ(Xt−1)εt. (23)

Here the εt represent a sequence of i.i.d. r.v.’s such that E[εt] = 0 and
E[ε2t ] = 1. The functions g and σ2 are unknown (smooth) functions modeling
the expectation and variance of the non-parametric time series and have each
been estimated by a local linear estimator (see Fan and Gijbels (1996) and
Fan and Yao (1998)). The respective bandwidths have been chosen by cross
validation. Obviously, model (23) is a generalization of the simple case where
the Xt alone are treated as i.i.d. variables (see Barone-Adesi et al. (1999) for
a similar approach).

Under these modeling assumptions the historical simulation method works
as follows: For a fixed business day t∗ ≥ 254, we estimate model (23) over the
time period {t∗ − 254, . . . , t∗} and calculate the time series of residuals via

ε̂t =
Xt − ĝt∗(Xt−1)
σ̂t∗(Xt−1)

, t = t∗ − 254, . . . , t∗.

(We introduce the index t∗ to emphasize that for each business day we perform
a new estimation of g and σ.) From the residuals we generate a vector of
forecasts for the volatility at time t∗ + 1

Ŷ
(j)
t∗+1 = (1 + X̂

(j)
t∗+1)Y ∗t , (24)

where
X̂

(j)
t∗+1 = ĝt∗(X∗t ) + σ̂t∗(X∗t )ε̂t∗+1−j , j = 1, . . . , 254.

We proceed in this manner for every t∗ ∈ {254, . . . , N}, where the time series
length N varies for the four different data sets investigated.

The standard way of testing whether model (24) generates reliable forecasts
is to consider the transformed variables Ut∗+1 = F̂t∗+1(Yt∗+1). Here F̂t∗+1(y)
denotes the empirical c.d.f. constituted from the Ŷ (j)

t∗+1 in (24). Under the null
hypothesis that the model always generates the correct (conditional) parame-
ter distribution, the (Ut∗+1) are independent and follow a uniform distribution
(see Rosenblatt, 1952). If the forecasts have a systematic tendency to over or
underestimate the historical volatilities this will result in deviations from uni-
formity.

Therefore, to investigate the validity of the method we use the test statistic
NSmod

. This will be compared with results for the original Neyman statistic
RSmod

. Let n = N − 254 be the number of transformed observations available.
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After estimating the auto-covariances for q = 0, 1, 2 in (13) we present the
corresponding p-values of the test statistic NSmod

in Table 7 for three data sets
- Swaption-EUR, Swaption-USD and EUR-GBP with the respective sample
sizes n = 97, 51, 525. In Figure 1 we have displayed the histograms of the
implied volatilities together with their Legendre polynomial projection density
estimators according to the result of the model selector Smod. Note, that for
EUR-GBP, Swaption-EUR and Swaption-USD Smod selects the dimension 1
and uniformity is not rejected at a 5% level. In these cases the resulting density
estimator is simply the uniform density (the first Legendre polynomial). Table
7 also provides p-values for the Neyman smooth test statistic RSmod

in the
independent case. We conclude that these values are very close to those for
NSmod

. We mention that the time series of the (Ut∗+1) was found to be almost
uncorrelated for the foreign exchange rates, for the swaptions we observed
autocorrelations up to 0.2. As can also be seen from Table 7, the p-values of
statistic NSmod

still do not change much for larger values of q in (13).

Table 7

The fourth data set EUR-USD is different. Table 8 shows some values of
NSmod

with n = 586 (see Figure 1). In this case we reject the uniformity at 5%
level (all p-values were found to be less than 10−4). In accordance with this,
Smod chooses the dimension d(n) = 4, which increases drastically the value of
NSmod

. The corresponding Legendre polynomial projection estimator of order
4 is displayed in Figure 1.

Finally, it is interesting to stress that the classical Kolmogorov-Smirnov test
does not reject uniformity in this case (the p-value is approximately 0.085).

Table 8

Figure 1
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Appendix

i) Proof of Theorem 1. First we introduce some notation. Let

Rj =
j∑

k=1

(
1√
n

n∑
i=1

φk(Xi)

)2

,

R∗k :=

(
1√
n

n∑
i=1

φk(Xi)

)2

, thus Rj =
j∑

k=1

R∗k.

In order to prove part (a) of Theorem 1 it is enough to prove that

P0(Smod 6= 1) = P0( max
2≤j≤d(n)

(Rj − j log n) > R1 − log n)→ 0

as n→∞. First note that

P0( max
2≤j≤d(n)

(Rj − j log n) > R1 − log n)

= P0(∃j : 2 ≤ j ≤ d(n) : Rj −R1 > (j − 1) log n)

≤ P0(∃k : 2 ≤ k ≤ d(n) : R∗k > log n)

≤
d(n)∑
k=2

P0(R∗k > log n) ≤
d(n)∑
k=2

E0(R∗k)/(log n),

where the last inequality follows from the Markov’s inequality. Due to the
strict stationarity of (Xt)t∈Z we have

E0(R∗k) =
1
n

∑
i,j

E0(φk(Xi)φk(Xj)) ≤ 2
n∑
i=0

|cov0(φk(X0), φk(Xi))|.

Now, using Corollary 1.2 of Rio (1993) and his comment on page 593 on
geometric rates of mixing (see also Theorem 1 of Doukhan et al. (1994), in
particular the point 4 of the discussion in page 68) we get that for each k and
for some C <∞

n∑
i=0

|cov0(φk(X0), φk(Xi))| ≤ C log k.

To this end, note that E0(φ2
k(X1)log+|φk(X1)| ≤ C ′logk1/2 = 1/2C ′logk, C ′ <

∞, since for orthonormal Legendre polynomial system max1≤j≤k supx |φj(x)| =
O(k1/2) and E0(φ2

k(X1)) = 1.

Finally we get

d(n)∑
k=2

E0(R∗k)/(logn) ≤ 1
2

d(n)∑
k=1

Clogk/(logn) = O(d(n) log d(n)/(log n))
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which proves the statement (a) of Theorem 1. Under additional conditions B
and C part (b) follows from Theorem 3.1 in Ignaccolo (2004). �

ii) Proof of Corollary 3. The constant 12σ2 in Smod2 does not affect the
asymptotic behavior of Smod. The result follows from Theorem 1 and Slutsky’s
lemma. �

iii) Proof of Theorem 4. Similarly as in Inglot et al. (1997), p. 1233 using
ergodic theorem (see e.g. Hannan (1970), p. 203) for k ∈ 1, . . . ,K − 1

Rk
n

P→ 0 and
RK
n

P→ {EPφK(X)}2 > 0.

It follows that
P (Smod ≥ K)→ 1.

To prove that NSmod

P→ ∞ first note that the condition on the mixing coeffi-
cients (Assumption (A)) assure that σ2 <∞ by Theorem 1.5 in Bosq (1998),
page 34. Now according to Theorem 3.3 in Ignaccolo (2004) the result follows.
�

iv) Proof of Lemma 6. Under H0 we have

A11i = 12E0(X1Xi)− 3 ∈ [−1; 1],

A21i = 180E0(X2
1X

2
i −X2

1Xi −X1X
2
i +X1Xi)− 5 ∈ [−1; 1].

Now using elementary calculations the result follows. �
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Statistics, 11, Birkhäuser Boston, 165–192



Title Suppressed Due to Excessive Length 19

Bradley, R. C. (2002) Introduction to Strong Mixing Conditions. Technical Report, 1, Indi-
ana University, Bloomington

Brockwell, J. P. and Davis, A. R. (1991) Time Series: Theory and Methods, 2nd edition,
Springer-Verlag, New York

Chanda, K. C. (1981) Chi-square goodness of fit tests based on dependent observations. In
Statistical distributions in scientific work, Vol. 5, ed. C. Taillie, G.P. Patil and B.A.
Baldessari, Dordrecht, Holland: D. Reidel Publishing Company, 35–49

Chanda, K. C. (1999) Chi-squared tests of goodness-of-fit for dependent observations.
Asymptotics, Non-parametrics and Time Series, Statistics: Textbooks and Monographs,
158, Dekker, New York, 743–756

Doukhan, P., Massart, P. and Rio, E. (1994) The functional central limit theorem for strongly
mixing processes. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques
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Table 1 5 % empirical critical values of TSmod
, TSmod2 and Tk (with fixed k = d(n)) of

K1 and K3 models with q = 3 in (13), and empirical counts of Smod and Smod2 under
uniformity and d(n) = 10, n = 50, based on 10, 000 samples in each case

d(n)
Critical values

1 2 3 4 5 6 7 8 9 10

TSmod
,K1 3.88 4.60 4.99 5.06 5.14 5.20 5.20 5.20 5.20 5.21

TSmod2 ,K1 3.88 4.22 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26
Tk,K1 3.88 4.96 5.96 6.81 7.63 8.50 9.25 10.05 10.81 11.69

TSmod
,K3 3.77 4.32 4.62 4.92 5.12 5.23 5.31 5.39 5.39 5.40

TSmod2 ,K3 3.77 3.88 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89
Tk,K3 3.77 4.51 5.14 5.61 6.07 6.60 7.12 7.55 7.93 8.33

s
Counts

1 2 3 4 5 6 7 8 9 10

Smod = s,K1 9260 528 127 31 28 12 6 2 4 2
Smod2 = s,K1 9862 125 11 1 0 0 1 0 0 0
Smod = s,K3 8144 1244 325 105 61 31 30 18 11 31
Smod2 = s,K3 9953 41 5 1 0 0 0 0 0 0
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Table 2 5 % empirical critical values of TSmod
, TSmod2 and Tk (with fixed k = d(n)) of

K2 and K4 models with q = 3 in (13), and empirical counts of Smod and Smod2 under
uniformity and d(n) = 10, n = 50, based on 10, 000 samples in each case

d(n)
Critical values

1 2 3 4 5 6 7 8 9 10

TSmod
,K2 3.92 8.98 9.69 9.86 9.92 9.93 9.93 9.93 9.94 9.94

TSmod2 ,K2 3.92 9.42 12.13 15.01 17.60 19.14 20.50 21.59 22.35 22.80
Tk,K2 3.92 9.55 12.75 16.21 19.47 21.96 24.71 27.51 30.26 32.87

TSmod
,K4 3.94 28.13 29.95 31.53 31.78 32.07 32.10 32.29 32.29 32.31

TSmod2 ,K4 3.94 28.13 32.14 38.66 42.69 49.99 54.36 59.83 65.12 70.56
Tk,K4 3.94 28.13 32.66 39.61 44.72 52.06 56.70 61.92 67.34 73.27

s
Counts

1 2 3 4 5 6 7 8 9 10

Smod = s,K2 9269 582 89 38 14 4 0 1 3 0
Smod2 = s,K2 7252 1319 504 323 206 127 86 83 56 44
Smod = s,K4 8415 1374 79 76 7 20 1 13 3 12
Smod2 = s,K4 2568 1711 615 813 578 636 561 705 746 1067
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Table 3 5 % empirical critical values when n = 50 based on 10, 000 samples in each case.

d(n)
Critical values

1 2 3 4 5 6 7 8 9 10

Cr1 3.79 5.41 5.84 6.07 6.14 6.14 6.14 6.14 6.14 6.14
Cr2 3.88 4.60 4.99 5.06 5.14 5.20 5.20 5.20 5.20 5.21
Cr3 3.88 4.22 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26
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Table 4 Estimated power (%) for g1 alternative defined in (14) of NSmod
, NSmod2 and Nk

(with fixed k = d(n)) based on K1 model and empirical counts of Smod and Smod2 when
d(n) = 10, n = 50, based on 10, 000 samples in each case; θ1 = 0.3, θ2 = (0.25,−0.35) and
θ3 = (0, 0, 0.4) in (15). For estimation of σ̂2 we use q = 3 in (13).

d(n)
Power

1 2 3 4 5 6 7 8 9 10

NSmod2 , θ1 36.31 34.20 33.94 33.95 33.95 33.95 33.95 33.95 33.95 33.95
NSmod

, θ1 36.31 32.44 29.99 29.77 29.39 29.02 29.03 29.05 29.08 28.99
RSmod

, θ1 55.88 42.61 39.90 38.38 38.01 38.02 38.01 38.01 38.02 38.02
NSmod2 , θ2 20.35 56.09 56.14 56.16 56.16 56.17 56.18 56.18 56.18 56.18
NSmod

, θ2 20.35 57.81 54.63 54.18 53.42 52.82 52.85 52.85 52.85 52.73
RSmod

, θ2 21.16 55.21 52.89 51.29 50.68 50.67 50.66 50.66 50.66 50.66
NSmod2 , θ3 4.90 5.61 23.72 23.91 23.95 23.95 23.95 23.95 23.95 23.95
NSmod

, θ3 4.90 6.55 53.53 53.70 53.22 52.72 52.74 52.75 52.76 52.62
RSmod

, θ3 5.42 6.55 57.09 57.36 57.50 57.59 57.61 57.62 57.62 57.62
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Table 5 Estimated power (%) for g2 alternative defined in (15) of NSmod
, NSmod2 and Nk

(with fixed k = d(n)) based on K1 model when n = 50 and d(n) = 10 based on 10, 000
samples in each case. For estimation of σ̂2 we use q = 3 in (13).

d(n)

{ρ, j} 1 2 3 4 5 6 7 8 9 10

{0.4;1} NSmod2 34.19 32.02 31.82 31.82 31.82 31.82 31.82 31.82 31.82 31.82
NSmod

34.19 30.40 28.26 28.02 27.48 27.09 27.11 27.13 27.13 27.03
RSmod

52.19 39.16 36.08 34.78 34.26 34.23 34.22 34.23 34.23 34.23
{0.5;2} NSmod2 4.93 30.41 30.34 30.35 30.35 30.35 30.35 30.35 30.35 30.35

NSmod
4.93 33.80 32.04 33.84 33.57 33.14 33.17 33.18 33.19 33.17

RSmod
8.41 60.44 58.65 58.47 58.10 58.13 58.15 58.16 58.16 58.16

{0.7;4} NSmod2 4.86 9.62 9.63 14.83 14.89 14.92 14.93 14.93 14.94 14.94
NSmod

4.86 11.04 11.45 45.07 45.68 52.20 52.47 52.53 52.57 52.56
RSmod

6.28 15.53 15.26 45.71 46.32 52.40 52.60 52.72 52.73 52.73



26 Axel Munk et al.

Table 6 Empirical characteristics of K3,K4 models, n = 500, 000. Under ”Cond1” we
mean the left hand side of (22), i.e. E0(X2

1X
2
i ) + 14/15E0(X1Xi) − 2E0(X2

1Xi) − 1/90.
Covh denotes the covariance between Xi and Xi+h for the lag h.

h

1 2 3 4 5 6 7

Covh,K3 0.0485 0.0289 0.0173 0.0105 0.0063 0.0038 0.0022
Cond1,K3 -0.0016 -0.0013 -0.0009 -0.0006 -0.0004 -0.0002 -0.0001
Covh,K4 -0.0486 0.0289 -0.0172 0.0104 -0.0064 0.0038 -0.0022
Cond1,K4 0.0048 -0.0014 0.0013 -0.0008 0.0004 -0.0003 0.0001
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Table 7 p-values of Neyman tests

Swaption-EUR Swaption-USD EUR-GBP

q
p-values

0 1 2 0 1 2 0 1 2

NSmod
0.72 0.70 0.71 0.53 0.59 0.55 0.75 0.74 0.74

RSmod
0.70 0.70 0.70 0.50 0.50 0.50 0.76 0.76 0.76
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Table 8 Values of Neyman tests

EUR-USD

q
Values

0 1 2

NSmod
52.13 53.83 54.32

RSmod
48.73 48.73 48.73
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Fig. 1 Histograms and the corresponding projection density estimators for the implied
volatility data


