Quantum algorithms for the hidden shift problem of Boolean functions

Maris Ozols

University of Waterloo, IQC and NEC Labs

Joint work with: Martin Rötteler (NEC Labs) Jérémie Roland (NEC Labs) Andrew Childs (University of Waterloo, IQC)

arXiv:1103.2774 Quantum rejection sampling arXiv:1103.3017 Quantum algorithm for the Boolean hidden shift problem

Motivation

Hidden shift and subgroup problems

Dagstuhl

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

- **Determine:** The hidden shift *s*
- Delta functions are hard

$$\blacktriangleright f(x) := \delta_{x,x_0}$$

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

- **Determine:** The hidden shift s
- Delta functions are hard

$$\blacktriangleright f(x) := \delta_{x,x_0}$$

Dagstuhl

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

- **Determine:** The hidden shift s
- Delta functions are hard
 - $f(x) := \delta_{x,x_0}$
 - Equivalent to Grover's search: $\Theta(\sqrt{2^n})$

Dagstuhl

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform
$$H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform $H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ $\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{Z}_2^n} (-1)^{w \cdot x} F(x)$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform
$$H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

 $\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{Z}_2^n} (-1)^{w \cdot x} F(x)$

Function f is **bent** if $\forall w : |\hat{F}(w)| = \frac{1}{\sqrt{2^n}}$

19/09/2011

Dagstuhl

Preparing the "phase state"

• Phase oracle $O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$

Preparing the "phase state"

• Phase oracle
$$O_{f_s}: |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

• Prepare $|\Phi(s)\rangle$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

•
$$|\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

• Prepare
$$|\Phi(s)\rangle$$

• $D|\Phi(s)\rangle = \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\hat{F}(w)| |w\rangle$
where $D := \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis & Meyer'04]

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

•
$$|\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

• Prepare
$$|\Phi(s)\rangle$$

►
$$D|\Phi(s)\rangle = \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\hat{F}(w)| |w\rangle$$

where $D := \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis & Meyer'04]

• If
$$f$$
 is bent then $H^{\otimes n}D|\Phi(s)
angle=|s
angle$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

•
$$|\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

• Prepare $|\Phi(s)\rangle$

►
$$D|\Phi(s)\rangle = \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\hat{F}(w)| |w\rangle$$

where $D := \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis & Meyer'04]

• If
$$f$$
 is bent then $H^{\otimes n}D|\Phi(s)
angle=|s
angle$

• Complexity: $\Theta(1)$

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

Easy (bent function)

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

Easy (bent function)

Hard (delta function) ►

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

What about the rest?

Easy (bent function)

Hard (delta function) ►

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

What about the rest?

Easy (bent function)

Three approaches:

- 1. Grover-like [Grover 00] / quantum rejection sampling [ORR'11]
- 2. Pretty good measurement
- 3. Simon-like [Rotteler'10, GRR'11]

Hard (delta function) 🕨

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

• Apply
$$R_{\boldsymbol{\varepsilon}}: |w\rangle|0\rangle \mapsto |w\rangle \frac{1}{\hat{F}(w)} \Big(\sqrt{\hat{F}(w)^2 - \varepsilon_w^2}|0\rangle + \varepsilon_w|1\rangle\Big)$$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

• Apply
$$R_{\boldsymbol{\varepsilon}} : |w\rangle|0\rangle \mapsto |w\rangle \frac{1}{\hat{F}(w)} \Big(\sqrt{\hat{F}(w)^2 - \varepsilon_w^2}|0\rangle + \varepsilon_w|1\rangle\Big)$$

If we would measure the last qubit, we would get outcome "1" w.p. ||ε||²₂ and the post-measurement state would be

$$\frac{1}{\|\boldsymbol{\varepsilon}\|_2} \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \varepsilon_w |w\rangle$$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

• Apply
$$R_{\boldsymbol{\varepsilon}} : |w\rangle|0\rangle \mapsto |w\rangle \frac{1}{\hat{F}(w)} \Big(\sqrt{\hat{F}(w)^2 - \varepsilon_w^2}|0\rangle + \varepsilon_w|1\rangle\Big)$$

If we would measure the last qubit, we would get outcome "1" w.p. ||ε||² and the post-measurement state would be

$$\frac{1}{\|\boldsymbol{\varepsilon}\|_2} \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \varepsilon_w |w\rangle$$

 \blacktriangleright Instead of measuring, amplify the amplitude on $|1\rangle$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

• Apply
$$R_{\boldsymbol{\varepsilon}} : |w\rangle|0\rangle \mapsto |w\rangle \frac{1}{\hat{F}(w)} \Big(\sqrt{\hat{F}(w)^2 - \varepsilon_w^2}|0\rangle + \varepsilon_w|1\rangle\Big)$$

If we would measure the last qubit, we would get outcome "1" w.p. ||ε||² and the post-measurement state would be

$$\frac{1}{\|\boldsymbol{\varepsilon}\|_2} \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \varepsilon_w |w\rangle$$

- \blacktriangleright Instead of measuring, amplify the amplitude on $|1\rangle$
- Complexity: $O(1/\|\boldsymbol{\varepsilon}\|_2)$

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

• Pick $\boldsymbol{\varepsilon} \in \mathbb{R}^{2^n}$ such that $\forall w : 0 \leq \varepsilon_w \leq |\hat{F}(w)|$

• Apply
$$R_{\boldsymbol{\varepsilon}} : |w\rangle|0\rangle \mapsto |w\rangle \frac{1}{\hat{F}(w)} \Big(\sqrt{\hat{F}(w)^2 - \varepsilon_w^2}|0\rangle + \varepsilon_w|1\rangle\Big)$$

If we would measure the last qubit, we would get outcome "1" w.p. ||ε||² and the post-measurement state would be

$$\frac{1}{\|\boldsymbol{\varepsilon}\|_2} \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \varepsilon_w |w\rangle$$

- \blacktriangleright Instead of measuring, amplify the amplitude on $|1\rangle$
- Complexity: $O(1/\|\boldsymbol{\varepsilon}\|_2)$

• Take
$$\varepsilon_w = \hat{F}_{\min}$$
 to get s with certainty in $O\left(\frac{1}{\sqrt{2^n}\hat{F}_{\min}}\right)$ queries

Algorithm

1. Prepare $|\Phi(s)\rangle$

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

- 1. Prepare $|\Phi(s)\rangle$
- 2. Perform an ε -rotation
- 3. Do amplitude amplification
- 4. Measure the resulting state in Fourier basis

Algorithm 1: Pros / cons

Performance

- Delta functions: $O(\sqrt{2^n})$
- ▶ Bent functions: *O*(1)

Issues

- What if $\hat{F}_{\min} = 0$?
- Undetectable anti-shifts: f(x+s) = f(x) + 1

Instead of the flat state

Instead of the flat state aim for approximately flat state

- Instead of the flat state aim for approximately flat state
- Fix success probability p

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \varepsilon_p / \|\varepsilon_p\|_2 \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \varepsilon_p / \|\varepsilon_p\|_2 \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \varepsilon_p / \|\varepsilon_p\|_2 \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \varepsilon_p / \|\varepsilon_p\|_2 \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$
- Queries: $O(1/\|\boldsymbol{\varepsilon}_p\|_2)$

After stage 1: $|\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \hat{F}(w) |w\rangle\right)^{\otimes t}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\hat{F}(w)|w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}|\mathcal{F}_w^t\rangle|w\rangle \end{array}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \hat{F}(w) |w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} |\mathcal{F}_w^t\rangle |w\rangle \\ \text{PGM:} & |E_s^t\rangle := \frac{1}{\sqrt{2^n}} \sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \frac{|\mathcal{F}_w^t\rangle}{||\mathcal{F}_w^t\rangle|_2} |w\rangle \end{array}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \hat{F}(w) |w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} |\mathcal{F}_w^t\rangle |w\rangle \\ \text{PGM:} & |E_s^t\rangle := \frac{1}{\sqrt{2^n}} \sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \frac{|\mathcal{F}_w^t\rangle}{|||\mathcal{F}_w^t\rangle||_2} |w\rangle \\ \text{E.g., for } t = 1: & |E_s^1\rangle := \frac{1}{\sqrt{2^n}} \sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \frac{\hat{F}(w)}{|\hat{F}(w)|} |w\rangle \end{array}$

Dagstuhl

Why does it work?

• States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = \left[\hat{F}^2\right]^{*t}(w) = \frac{1}{\sqrt{2^n}} \underbrace{(F * F)^t}(w)$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = \left[\hat{F}^2\right]^{*t} (w) = \frac{1}{\sqrt{2^n}} \widehat{(F * F)^t} (w)$

• Convolution: $(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w-x)$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = [\hat{F}^2]^{*t}(w) = \frac{1}{\sqrt{2^n}} \underbrace{(F * F)^t(w)}_{w}$

► Convolution: $(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w - x)$

19/09/2011

Dagstuhl

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = [\hat{F}^2]^{*t}(w) = \frac{1}{\sqrt{2^n}} \widehat{(F * F)^t}(w)$

• Convolution: $(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w - x)$

Dagstuhl

Algorithm 2: Pros / cons

Performance

- ▶ Bent functions: *O*(1)
- ▶ Random functions: *O*(1)
- No issues with undetectable anti-shifts

Issues

• Delta functions: $O(2^n)$, no speedup

Note

For some $t \leq n$ there will be no zero amplitudes!

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}} : |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}} : |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

• Complexity: $O(n/\sqrt{I_f})$

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}} : |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

$$|0\rangle \qquad H \qquad k \qquad H$$
$$|0\rangle^{\otimes n} \qquad H^{\otimes n} \qquad O_{f_{ks}} \qquad H^{\otimes n}$$
$$|\Psi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} \hat{F}(w) |s \cdot w\rangle |w\rangle$$

• Complexity:
$$O(n/\sqrt{I_f})$$

• Where $I_f(w)$ is the *influence* of $w \in \mathbb{Z}_2^n$ on f:

$$I_f(w) := \Pr_x \Big[f(x) \neq f(x+w) \Big]$$

and $I_f := \min_w I_f(w)$

Comparison

	delta	bent	random
Grover-like	$O(\sqrt{2^n})$	O(1)	O(1)
PGM	$O(2^n)$	O(1)	O(1)
Simon-like	$O(n\sqrt{2^n})$	O(n)	O(n)

What is the best quantum algorithm for solving BHSP?

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- Generalize from \mathbb{Z}_2 to \mathbb{Z}_d

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- Generalize from \mathbb{Z}_2 to \mathbb{Z}_d
- Applications

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow

Thank you for your attention!
Classical rejection sampling

Classical resampling problem

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution q

Classical algorithm

Quantum rejection sampling

Quantum resampling problem

- Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$
- **Task:** Perform transformation

$$\sum_{k=1}^n \pi_k |\xi_k\rangle |k\rangle \mapsto \sum_{k=1}^n \sigma_k |\xi_k\rangle |k\rangle$$

▶ Note: Amplitudes π_k and σ_k are known, but states $|\xi_k\rangle$ are not known