Quantum algorithms for the hidden shift problem of Boolean functions

Maris Ozols
University of Waterloo, IQC
and NEC Labs
Joint work with: Martin Rötteler (NEC Labs)
Jérémie Roland (NEC Labs)
Andrew Childs (University of Waterloo, IQC)

Motivation

Hidden shift and subgroup problems

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$
- Equivalent to Grover's search: $\Theta\left(\sqrt{2^{n}}\right)$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform $H:=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 \\ 1 & -1 \\ -1\end{array}\right)$

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform $\quad H:=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}(-1)^{w \cdot x} F(x)$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform $\quad H:=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}(-1)^{w \cdot x} F(x)$

Function f is bent if $\forall w:|\hat{F}(w)|=\frac{1}{\sqrt{2^{n}}}$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- $D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w)||w\rangle$ where $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04]

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- $D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w)||w\rangle$ where $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04]
- If f is bent then $H^{\otimes n} D|\Phi(s)\rangle=|s\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- $D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w)||w\rangle$ where $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04]
- If f is bent then $H^{\otimes n} D|\Phi(s)\rangle=|s\rangle$
- Complexity: $\Theta(1)$

All Boolean functions

All Boolean functions

In total there are $2^{2^{n}}$. Boolean functions with n arguments. For $n=8$ this is roughly 10^{77}.

All Boolean functions

In total there are $2^{2^{n}}$. Boolean functions with n arguments. For $n=8$ this is roughly 10^{77}.

All Boolean functions

In total there are $2^{2^{n}}$. Boolean functions with n arguments. For $n=8$ this is roughly 10^{77}.

\checkmark Easy (bentwunction)

Hard (delta function)

All Boolean functions

In total there are $2^{2^{n}}$. Boolean functions with n arguments. For $n=8$ this is roughly 10^{77}.

What about the, rest?

Härd (delta function)

All Boolean functions

In total there are $2^{2^{n}}$. Boolean functions with n arguments. For $n=8$ this is roughly 10^{77}.

What about the rest?

Easy (bentefunction)

Three approaches:

1. Grover-like [Grover 00] / quantum rejection sampling [ORR'11]
2. Pretty good measurement.
3. Simon-like [Rötteler' 10; GRR'11].

Härd (delta function)

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$
- Apply $R_{\varepsilon}:|w\rangle|0\rangle \mapsto|w\rangle \frac{1}{\hat{F}(w)}\left(\sqrt{\hat{F}(w)^{2}-\varepsilon_{w}^{2}}|0\rangle+\varepsilon_{w}|1\rangle\right)$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$
- Apply $R_{\varepsilon}:|w\rangle|0\rangle \mapsto|w\rangle \frac{1}{\hat{F}(w)}\left(\sqrt{\hat{F}(w)^{2}-\varepsilon_{w}^{2}}|0\rangle+\varepsilon_{w}|1\rangle\right)$
- If we would measure the last qubit, we would get outcome " 1 " w.p. $\|\varepsilon\|_{2}^{2}$ and the post-measurement state would be

$$
\frac{1}{\|\varepsilon\|_{2}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \varepsilon_{w}|w\rangle
$$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$
- Apply $R_{\varepsilon}:|w\rangle|0\rangle \mapsto|w\rangle \frac{1}{\hat{F}(w)}\left(\sqrt{\hat{F}(w)^{2}-\varepsilon_{w}^{2}}|0\rangle+\varepsilon_{w}|1\rangle\right)$
- If we would measure the last qubit, we would get outcome " 1 " w.p. $\|\varepsilon\|_{2}^{2}$ and the post-measurement state would be

$$
\frac{1}{\|\varepsilon\|_{2}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \varepsilon_{w}|w\rangle
$$

- Instead of measuring, amplify the amplitude on $|1\rangle$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$
- Apply $R_{\varepsilon}:|w\rangle|0\rangle \mapsto|w\rangle \frac{1}{\hat{F}(w)}\left(\sqrt{\hat{F}(w)^{2}-\varepsilon_{w}^{2}}|0\rangle+\varepsilon_{w}|1\rangle\right)$
- If we would measure the last qubit, we would get outcome " 1 " w.p. $\|\varepsilon\|_{2}^{2}$ and the post-measurement state would be

$$
\frac{1}{\|\varepsilon\|_{2}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \varepsilon_{w}|w\rangle
$$

- Instead of measuring, amplify the amplitude on $|1\rangle$
- Complexity: $O\left(1 /\|\varepsilon\|_{2}\right)$

Algorithm 1: Grover-like / quantum rejection sampling

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

- Pick $\varepsilon \in \mathbb{R}^{2^{n}}$ such that $\forall w: 0 \leq \varepsilon_{w} \leq|\hat{F}(w)|$
- Apply $R_{\varepsilon}:|w\rangle|0\rangle \mapsto|w\rangle \frac{1}{\hat{F}(w)}\left(\sqrt{\hat{F}(w)^{2}-\varepsilon_{w}^{2}}|0\rangle+\varepsilon_{w}|1\rangle\right)$
- If we would measure the last qubit, we would get outcome " 1 " w.p. $\|\varepsilon\|_{2}^{2}$ and the post-measurement state would be

$$
\frac{1}{\|\varepsilon\|_{2}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \varepsilon_{w}|w\rangle
$$

- Instead of measuring, amplify the amplitude on $|1\rangle$
- Complexity: $O\left(1 /\|\varepsilon\|_{2}\right)$
- Take $\varepsilon_{w}=\hat{F}_{\text {min }}$ to get s with certainty in $O\left(\frac{1}{\sqrt{2^{n}} \hat{F}_{\text {min }}}\right)$ queries

Algorithm 1: "Demo"

Algorithm

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification

Algorithm 1: "Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle$
2. Perform an ε-rotation
3. Do amplitude amplification
4. Measure the resulting state in Fourier basis

Algorithm 1: Pros / cons

Performance

- Delta functions: $O\left(\sqrt{2^{n}}\right)$
- Bent functions: $O(1)$

Issues

- What if $\hat{F}_{\text {min }}=0$?
- Undetectable anti-shifts: $f(x+s)=f(x)+1$

Algorithm 1: Approximate version

Algorithm 1: Approximate version

- Instead of the flat state

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state
- Fix success probability p

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_{p} such that $\boldsymbol{\mu}^{\top} \cdot \varepsilon_{p} /\left\|\varepsilon_{p}\right\|_{2} \geq \sqrt{p}$ where $\mu_{w}=\frac{1}{\sqrt{2^{n}}}$

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_{p} such that $\boldsymbol{\mu}^{\top} \cdot \varepsilon_{p} /\left\|\varepsilon_{p}\right\|_{2} \geq \sqrt{p}$ where $\mu_{w}=\frac{1}{\sqrt{2^{n}}}$

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_{p} such that $\boldsymbol{\mu}^{\top} \cdot \varepsilon_{p} /\left\|\varepsilon_{p}\right\|_{2} \geq \sqrt{p}$ where $\mu_{w}=\frac{1}{\sqrt{2^{n}}}$

Algorithm 1: Approximate version

- Instead of the flat state aim for approximately flat state
- Fix success probability p
- Optimal choice of ε is given by the "water filling" vector ε_{p} such that $\boldsymbol{\mu}^{\top} \cdot \varepsilon_{p} /\left\|\varepsilon_{p}\right\|_{2} \geq \sqrt{p}$ where $\mu_{w}=\frac{1}{\sqrt{2^{n}}}$
- Queries: $O\left(1 /\left\|\varepsilon_{p}\right\|_{2}\right)$

Algorithm 2: Pretty good measurement

Algorithm 2: Pretty good measurement

After stage 1: $\quad|\Phi(s)\rangle^{\otimes t}=\left(\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle\right)^{\otimes t}$

Algorithm 2: Pretty good measurement

After stage 1: $\quad|\Phi(s)\rangle^{\otimes t}=\left(\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle\right)^{\otimes t}$
After stage 2: $\quad\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$

Algorithm 2: Pretty good measurement

After stage 1: $\quad|\Phi(s)\rangle^{\otimes t}=\left(\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle\right)^{\otimes t}$
After stage 2: $\quad\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$

$$
\mathrm{PGM}: \quad\left|E_{s}^{t}\right\rangle:=\frac{1}{\sqrt{2^{n}}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{\left|\mathcal{F}_{w}^{t}\right\rangle}{\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}}|w\rangle
$$

Algorithm 2: Pretty good measurement

After stage 1: $\quad|\Phi(s)\rangle^{\otimes t}=\left(\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle\right)^{\otimes t}$
After stage 2: $\quad\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$

$$
\mathrm{PGM}: \quad\left|E_{s}^{t}\right\rangle:=\frac{1}{\sqrt{2^{n}}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{\left|\mathcal{F}_{w}^{t}\right\rangle}{\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}}|w\rangle
$$

E.g., for $t=1$: $\quad\left|E_{s}^{1}\right\rangle:=\frac{1}{\sqrt{2^{n}}} \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{\hat{F}(w)}{|\hat{F}(w)|}|w\rangle$

Algorithm 2: Pretty good measurement

Why does it work?

- States: $\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$

Algorithm 2: Pretty good measurement

Why does it work?

- States: $\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$ where $\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}^{2}=\left[\hat{F}^{2}\right]^{* t}(w)=\frac{1}{\sqrt{2^{n}}} \overline{(F * F)^{t}}(w)$

Algorithm 2: Pretty good measurement

Why does it work?

- States: $\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$ where $\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}^{2}=\left[\hat{F}^{2}\right]^{* t}(w)=\frac{1}{\sqrt{2^{n}}} \overline{(F * F)^{t}}(w)$
- Convolution: $(F * F)(w)=\sum_{x \in \mathbb{Z}_{2}^{n}} F(x) F(w-x)$

Algorithm 2: Pretty good measurement

Why does it work?

- States: $\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$ where $\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}^{2}=\left[\hat{F}^{2}\right]^{* t}(w)=\frac{1}{\sqrt{2^{n}}} \overline{(F * F)^{t}}(w)$
- Convolution: $(F * F)(w)=\sum_{x \in \mathbb{Z}_{2}^{n}} F(x) F(w-x)$

Algorithm 2: Pretty good measurement

Why does it work?

- States: $\left|\Phi^{t}(s)\right\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}\left|\mathcal{F}_{w}^{t}\right\rangle|w\rangle$ where $\|\left|\mathcal{F}_{w}^{t}\right\rangle \|_{2}^{2}=\left[\hat{F}^{2}\right]^{* t}(w)=\frac{1}{\sqrt{2^{n}}} \overline{(F * F)^{t}}(w)$
- Convolution: $(F * F)(w)=\sum_{x \in \mathbb{Z}_{2}^{n}} F(x) F(w-x)$

Algorithm 2: Pros / cons

Performance

- Bent functions: $O(1)$
- Random functions: $O(1)$
- No issues with undetectable anti-shifts

Issues

- Delta functions: $O\left(2^{n}\right)$, no speedup

Note

- For some $t \leq n$ there will be no zero amplitudes!

Algorithm 3: Simon-like

- Oracle $O_{f_{k s}}:|k\rangle|w\rangle \mapsto(-1)^{f(x+k s)}|k\rangle|w\rangle$

Algorithm 3: Simon-like

- Oracle $O_{f_{k s}}:|k\rangle|w\rangle \mapsto(-1)^{f(x+k s)}|k\rangle|w\rangle$

- Complexity: $O\left(n / \sqrt{I_{f}}\right)$

Algorithm 3: Simon-like

- Oracle $O_{f_{k s}}:|k\rangle|w\rangle \mapsto(-1)^{f(x+k s)}|k\rangle|w\rangle$

- Complexity: $O\left(n / \sqrt{I_{f}}\right)$
- Where $I_{f}(w)$ is the influence of $w \in \mathbb{Z}_{2}^{n}$ on f :

$$
I_{f}(w):=\operatorname{Pr}_{x}[f(x) \neq f(x+w)]
$$

and $I_{f}:=\min _{w} I_{f}(w)$

Comparison

	delta	bent	random
Grover-like	$O\left(\sqrt{2^{n}}\right)$	$O(1)$	$O(1)$
PGM	$O\left(2^{n}\right)$	$O(1)$	$O(1)$
Simon-like	$O\left(n \sqrt{2^{n}}\right)$	$O(n)$	$O(n)$

Open problems

- What is the best quantum algorithm for solving BHSP?

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
- Verification of $s: O\left(1 / \sqrt{I_{f}}\right)$

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
- Verification of $s: O\left(1 / \sqrt{I_{f}}\right)$
- Extracting parity $w \cdot s: O(1 / \hat{F}(w))$

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
- Verification of $s: O\left(1 / \sqrt{I_{f}}\right)$
- Extracting parity $w \cdot s: O(1 / \hat{F}(w))$
- What is the classical query complexity of this problem?

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
- Verification of $s: O\left(1 / \sqrt{I_{f}}\right)$
- Extracting parity $w \cdot s: O(1 / \hat{F}(w))$
- What is the classical query complexity of this problem?
- Generalize from \mathbb{Z}_{2} to \mathbb{Z}_{d}

Open problems

- What is the best quantum algorithm for solving BHSP?
- Quantum query lower bound?
- Related problems:
- Verification of $s: O\left(1 / \sqrt{I_{f}}\right)$
- Extracting parity $w \cdot s: O(1 / \hat{F}(w))$
- What is the classical query complexity of this problem?
- Generalize from \mathbb{Z}_{2} to \mathbb{Z}_{d}
- Applications

Thank you for your attention!

Classical rejection sampling

Classical resampling problem

- Given: Ability to sample from distribution p
- Task: Sample from distribution q

Classical algorithm

Quantum rejection sampling

Quantum resampling problem

- Given: Oracle $O:|0\rangle \mapsto \sum_{k=1}^{n} \pi_{k}\left|\xi_{k}\right\rangle|k\rangle$
- Task: Perform transformation

$$
\sum_{k=1}^{n} \pi_{k}\left|\xi_{k}\right\rangle|k\rangle \mapsto \sum_{k=1}^{n} \sigma_{k}\left|\xi_{k}\right\rangle|k\rangle
$$

- Note: Amplitudes π_{k} and σ_{k} are known, but states $\left|\xi_{k}\right\rangle$ are not known

