





Easy and hard functions for the Boolean hidden shift problem

Andrew M. Childs¹, Robin Kothari¹, Maris Ozols², Martin Roetteler³ ¹University of Waterloo & Institute for Quantum Computing ²University of Cambridge ³Microsoft Research

Random functions are easy

Algorithm PGM(t)

- 1. Prepare $|\Phi^t(s)\rangle := (O_{f_s}|+)^{\otimes n})^{\otimes l}$

Note: for t = 1 this agrees with [Röt10]

Theorem

If f is chosen uniformly at random and s is chosen adversarially, then PGM(2) solves $BHSP_f$ with two queries and expected success probability exponentially close to 1.

Proof. Second moment method, a *t*-fold generalization of the Fourier transform, and combinatorics of pairings.

Approach	Functions		
	delta	bent	random
PGM	$O(2^n)$	1	2
[ORR12]	$O(\sqrt{2^n})$	1	?
[GRR11]	$O(n \sqrt{2^n})$	O(n)	O(n)
[AS05]	$O(n \log n \sqrt{2^n})$	$O(n \log n)$	$O(n \log n)$
ower bounds:	$\Omega(\sqrt{2^n})$	1	1

Conclusions

Summary

- $\triangleright O(\sqrt{2^n})$ queries for any f
- $\Theta(\sqrt{2^n/|f|})$ queries when |f| is small
- Exact one-query algorithm \Leftrightarrow f is bent
- ► Two queries suffice for random f

Open questions

- Query-optimal quantum algorithm for all f
- ► Time-efficient algorithm for some f
- Applications in cryptography

2. Perform Pretty Good Measurement for $\{|\Phi^t(s)\rangle : s \in \mathbb{Z}_2^n\}$