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Problem

Boolean hidden shift problem

▸ Given: complete description of f ∶Zn
2 →Z2 and access to a

black-box oracle for fs(x) ∶= f (x+ s)

▸ Determine: hidden shift s ∈ Zn
2

Quantum query complexity

▸ Oracle: Ofs ∶ ∣x⟩ ↦ (−1)f(x+s)∣x⟩
▸ Q(BHSPf ) := bounded error quantum query complexity of

the Boolean hidden shift problem for function f
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Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0
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s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)
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Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f
▸ Q(BHSPf ) = π

4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness
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Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent
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Easy instances

PGM algorithm

1. Prepare ∣Φt(s)⟩ ∶= (Ofs ∣+⟩⊗n)
⊗t

2. Perform Pretty Good Measurement for {∣Φt(s)⟩ ∶ s ∈ Zn
2}

For t = 1 this agrees with [Röt10]

Random functions are easy

▸ f is chosen uniformly at random
▸ s is chosen adversarially

PGM solves BHSPf with two queries and expected success
probability exponentially close to 1

Proof involves: second moment method, a t-fold generalization
of the Fourier transform, combinatorics of pairings
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Comparison

Approach
Functions

delta bent random
PGM O(2n) 1 2

[ORR12] O(
√

2n) 1 ?
[GRR11] O(n

√
2n) O(n) O(n)

[AS05] O(n log n
√

2n) O(n log n) O(n log n)
Lower bounds: Ω(

√
2n) 1 1



Conclusions

Summary

▸ O(
√

2n) queries for any f
▸ Θ(

√
2n/∣f ∣) queries when ∣f ∣ is small

▸ Exact one-query algorithm ⇔ f is bent
▸ Two queries suffice for random f

Open questions

▸ Query-optimal quantum algorithm for all f
▸ Time-efficient algorithm for some f
▸ Applications in cryptography

Thank you!
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