
Easy and hard functions for
the Boolean hidden shift problem

Maris Ozols
(IBM)

Andrew Childs, Robin Kothari
(University of Waterloo & IQC)

Martin Roetteler
(NEC Labs)

arXiv:1304.4642

May 21, 2013

http://arxiv.org/abs/1304.4642


Outline

1. Motivation and problem
2. Hard instances
3. Easy instances

▸ bent functions
▸ random functions

4. Conclusions



Motivation

Hidden
shift

problem

Hidden
subgroup
problem

Legendre
symbol

[vDHI06]

Attacks on
cryptosystems

?New
algorithms

[ORR12]

?

Factoring
[Sho97]

Discrete
logarithm

[Sho97]

Pell’s
equation
[Hal07]

Lattice
problems
[Reg04]
[Kup05]

?

Graph
isomorhpism

[AMRR11]

?



Motivation

Hidden
shift

problem

Hidden
subgroup
problem

Legendre
symbol

[vDHI06]

Attacks on
cryptosystems

?New
algorithms

[ORR12]

?

Factoring
[Sho97]

Discrete
logarithm

[Sho97]

Pell’s
equation
[Hal07]

Lattice
problems
[Reg04]
[Kup05]

?

Graph
isomorhpism

[AMRR11]

?



Problem

Boolean hidden shift problem

▸ Given: complete description of f ∶Zn
2 →Z2 and access to a

black-box oracle for fs(x) ∶= f (x+ s)

▸ Determine: hidden shift s ∈ Zn
2

Quantum query complexity

▸ Oracle: Ofs ∶ ∣x⟩ ↦ (−1)f(x+s)∣x⟩
▸ Q(BHSPf ) := bounded error quantum query complexity of

the Boolean hidden shift problem for function f



Problem

Boolean hidden shift problem

▸ Given: complete description of f ∶Zn
2 →Z2 and access to a

black-box oracle for fs(x) ∶= f (x+ s)
▸ Determine: hidden shift s ∈ Zn

2

Quantum query complexity

▸ Oracle: Ofs ∶ ∣x⟩ ↦ (−1)f(x+s)∣x⟩
▸ Q(BHSPf ) := bounded error quantum query complexity of

the Boolean hidden shift problem for function f



Problem

Boolean hidden shift problem

▸ Given: complete description of f ∶Zn
2 →Z2 and access to a

black-box oracle for fs(x) ∶= f (x+ s)
▸ Determine: hidden shift s ∈ Zn

2

Quantum query complexity

▸ Oracle: Ofs ∶ ∣x⟩ ↦ (−1)f(x+s)∣x⟩

▸ Q(BHSPf ) := bounded error quantum query complexity of
the Boolean hidden shift problem for function f



Problem

Boolean hidden shift problem

▸ Given: complete description of f ∶Zn
2 →Z2 and access to a

black-box oracle for fs(x) ∶= f (x+ s)
▸ Determine: hidden shift s ∈ Zn

2

Quantum query complexity

▸ Oracle: Ofs ∶ ∣x⟩ ↦ (−1)f(x+s)∣x⟩
▸ Q(BHSPf ) := bounded error quantum query complexity of

the Boolean hidden shift problem for function f



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1n

f(x)

x0

x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs

▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]

▸ Q(BHSPf ) = O(
√

2n)



Hard instances

Delta functions
▸ f (x) ∶= δx,x0 for some x0 ∈ Zn

2

▸ Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Brute force approach

▸ Completely extract the truth table of fs
▸ Oracle identification problem [AIK+04]
▸ Q(BHSPf ) = O(

√
2n)



Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f
▸ Q(BHSPf ) = π

4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness



Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f

▸ Q(BHSPf ) = π
4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness



Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f
▸ Q(BHSPf ) = π

4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness



Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f
▸ Q(BHSPf ) = π

4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness



Hard instances
Algorithm

1. Use Grover’s algorithm to find some x0 with fs(x0) = 1
2. Brute force through all s that give fs(x0) = 1

Complexity

▸ ∣f ∣ := the Hamming weight of the truth table of f
▸ Q(BHSPf ) = π

4

√
2n/∣f ∣ +O(

√
∣f ∣)

▸ Q(BHSPf ) = Ω(
√

2n/∣f ∣) via adversary method

Punchline
▸ For f to be hard, it is necessary that ∣f ∣ is O(1) or Θ(2n)
▸ Delta functions are the hardest instances
▸ Hamming weight alone does not determine hardness



Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent



Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent



Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent



Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent



Easy instances

Algorithm [Röt10]

∣0⟩⊗n ∣s⟩H⊗n H⊗nOfs D−1 H⊗n

∣Φ(s)⟩

▸ ∣Φ(s)⟩ ∶= ∑w∈Zn
2
(−1)s⋅wF̂(w)∣w⟩

▸ D ∶= diag(
√

2nF̂(w)), may not be unitary in general

Bent functions
▸ ∣F̂(w)∣ = 1/

√
2n for all w ∈ Zn

2
▸ D is unitary
▸ Exact algorithm with one query!

Converse
If an exact one-query algorithm exists for BHSPf then f is bent



Easy instances

PGM algorithm

1. Prepare ∣Φt(s)⟩ ∶= (Ofs ∣+⟩⊗n)
⊗t

2. Perform Pretty Good Measurement for {∣Φt(s)⟩ ∶ s ∈ Zn
2}

For t = 1 this agrees with [Röt10]

Random functions are easy

▸ f is chosen uniformly at random
▸ s is chosen adversarially

PGM solves BHSPf with two queries and expected success
probability exponentially close to 1

Proof involves: second moment method, a t-fold generalization
of the Fourier transform, combinatorics of pairings



Easy instances

PGM algorithm

1. Prepare ∣Φt(s)⟩ ∶= (Ofs ∣+⟩⊗n)
⊗t

2. Perform Pretty Good Measurement for {∣Φt(s)⟩ ∶ s ∈ Zn
2}

For t = 1 this agrees with [Röt10]

Random functions are easy

▸ f is chosen uniformly at random
▸ s is chosen adversarially

PGM solves BHSPf with two queries and expected success
probability exponentially close to 1

Proof involves: second moment method, a t-fold generalization
of the Fourier transform, combinatorics of pairings



Easy instances

PGM algorithm

1. Prepare ∣Φt(s)⟩ ∶= (Ofs ∣+⟩⊗n)
⊗t

2. Perform Pretty Good Measurement for {∣Φt(s)⟩ ∶ s ∈ Zn
2}

For t = 1 this agrees with [Röt10]

Random functions are easy

▸ f is chosen uniformly at random
▸ s is chosen adversarially

PGM solves BHSPf with two queries and expected success
probability exponentially close to 1

Proof involves: second moment method, a t-fold generalization
of the Fourier transform, combinatorics of pairings



Easy instances

PGM algorithm

1. Prepare ∣Φt(s)⟩ ∶= (Ofs ∣+⟩⊗n)
⊗t

2. Perform Pretty Good Measurement for {∣Φt(s)⟩ ∶ s ∈ Zn
2}

For t = 1 this agrees with [Röt10]

Random functions are easy

▸ f is chosen uniformly at random
▸ s is chosen adversarially

PGM solves BHSPf with two queries and expected success
probability exponentially close to 1

Proof involves: second moment method, a t-fold generalization
of the Fourier transform, combinatorics of pairings



Comparison

Approach
Functions

delta bent random
PGM O(2n) 1 2

[ORR12] O(
√

2n) 1 ?
[GRR11] O(n

√
2n) O(n) O(n)

[AS05] O(n log n
√

2n) O(n log n) O(n log n)
Lower bounds: Ω(

√
2n) 1 1



Conclusions

Summary

▸ O(
√

2n) queries for any f
▸ Θ(

√
2n/∣f ∣) queries when ∣f ∣ is small

▸ Exact one-query algorithm ⇔ f is bent
▸ Two queries suffice for random f

Open questions

▸ Query-optimal quantum algorithm for all f
▸ Time-efficient algorithm for some f
▸ Applications in cryptography

Thank you!



Conclusions

Summary

▸ O(
√

2n) queries for any f
▸ Θ(

√
2n/∣f ∣) queries when ∣f ∣ is small

▸ Exact one-query algorithm ⇔ f is bent
▸ Two queries suffice for random f

Open questions

▸ Query-optimal quantum algorithm for all f
▸ Time-efficient algorithm for some f
▸ Applications in cryptography

Thank you!



Conclusions

Summary

▸ O(
√

2n) queries for any f
▸ Θ(

√
2n/∣f ∣) queries when ∣f ∣ is small

▸ Exact one-query algorithm ⇔ f is bent
▸ Two queries suffice for random f

Open questions

▸ Query-optimal quantum algorithm for all f
▸ Time-efficient algorithm for some f
▸ Applications in cryptography

Thank you!



Bibliography I

[AIK+04] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda,
Raymond H. Putra, and Shigeru Yamashita.
Quantum identification of Boolean oracles.
In Proceedings of the 21st Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2004), volume 2996 of Lecture Notes in Computer
Science, pages 105–116. Springer, 2004.
arXiv:quant-ph/0403056,
doi:10.1007/978-3-540-24749-4_10.

[AMRR11] Andris Ambainis, Loı̈ck Magnin, Martin Roetteler, and Jérémie Roland.
Symmetry-assisted adversaries for quantum state generation.
In Proceedings of the 26th Annual IEEE Conference on Computational
Complexity (CCC’11), pages 167–177. IEEE Computer Society, 2011.
arXiv:1012.2112, doi:10.1109/CCC.2011.24.

[AS05] Alp Atıcı and Rocco A. Servedio.
Improved bounds on quantum learning algorithms.
Quantum Information Processing, 4(5):355–386, 2005.
arXiv:quant-ph/0411140, doi:10.1007/s11128-005-0001-2.

[GRR11] Dmitry Gavinsky, Martin Roetteler, and Jérémie Roland.
Quantum algorithm for the Boolean hidden shift problem.
In Computing and Combinatorics, volume 6842 of Lecture Notes in Computer
Science, pages 158–167. Springer, 2011.
arXiv:1103.3017, doi:10.1007/978-3-642-22685-4_14.

http://arxiv.org/abs/quant-ph/0403056
http://dx.doi.org/10.1007/978-3-540-24749-4_10
http://arxiv.org/abs/1012.2112
http://dx.doi.org/10.1109/CCC.2011.24
http://arxiv.org/abs/quant-ph/0411140
http://dx.doi.org/10.1007/s11128-005-0001-2
http://arxiv.org/abs/1103.3017
http://dx.doi.org/10.1007/978-3-642-22685-4_14


Bibliography II

[Hal07] Sean Hallgren.
Polynomial-time quantum algorithms for Pell’s equation and the principal
ideal problem.
Journal of the ACM, 54(1):4:1–4:19, Mar 2007.
doi:10.1145/1206035.1206039.

[Kup05] Greg Kuperberg.
A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem.
SIAM Journal on Computing, 35(1):170–188, 2005.
arXiv:quant-ph/0302112, doi:10.1137/S0097539703436345.

[ORR12] Maris Ozols, Martin Roetteler, and Jérémie Roland.
Quantum rejection sampling.
In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS 2012), pages 290–308. ACM, 2012.
arXiv:1103.2774, doi:10.1145/2090236.2090261.

[Reg04] Oded Regev.
Quantum computation and lattice problems.
SIAM Journal on Computing, 33(3):738–760, 2004.
arXiv:cs/0304005, doi:10.1137/S0097539703440678.

http://dx.doi.org/10.1145/1206035.1206039
http://arxiv.org/abs/quant-ph/0302112
http://dx.doi.org/10.1137/S0097539703436345
http://arxiv.org/abs/1103.2774
http://dx.doi.org/10.1145/2090236.2090261
http://arxiv.org/abs/cs/0304005
http://dx.doi.org/10.1137/S0097539703440678


Bibliography III

[Röt10] Martin Rötteler.
Quantum algorithms for highly non-linear Boolean functions.
In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), pages 448–457. SIAM, 2010.
URL: http://dl.acm.org/citation.cfm?id=1873601.1873638,
arXiv:0811.3208.

[Sho97] Peter W. Shor.
Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer.
SIAM Journal on Computing, 26(5):1484–1509, 1997.
Earlier version in FOCS 1994, pp. 124–134.
arXiv:quant-ph/9508027, doi:10.1137/S0097539795293172.

[vDHI06] Wim van Dam, Sean Hallgren, and Lawrence Ip.
Quantum algorithms for some hidden shift problems.
SIAM Journal on Computing, 36(3):763–778, 2006.
arXiv:quant-ph/0211140, doi:10.1137/S009753970343141X.

http://dl.acm.org/citation.cfm?id=1873601.1873638
http://arxiv.org/abs/0811.3208
http://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/quant-ph/0211140
http://dx.doi.org/10.1137/S009753970343141X

