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Motivation

I Understand LOCC and separable
operations and difference between them.

I Develop new tools for working with
LOCC protocols. In particular, for lower
bounding the error probability.

State Discrimination Problem

Let S = {|ψ1〉, . . . , |ψn〉} ⊂ C
dA ⊗ CdB be a

known set of quantum states. Suppose that
k ∈ {1, . . . , n} is selected uniformly at ran-
dom and Alice and Bob are given the corre-
sponding parts of state |ψk〉 ∈ S. Their task
is to determine the index k.

Quantum Nonlocality Without
Entanglement
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Theorem (see [1]). Any LOCC protocol for
discriminating states

|1〉|1〉
|0〉|0 ± 1〉 |1 ± 2〉|0〉
|2〉|1 ± 2〉 |0 ± 1〉|2〉

has mutual information deficit at least
0.00000531 bits.

LOCC Protocol As a Tree
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Nonlocality Constant

Definition. Let Gij = 〈ψi|(a⊗b)|ψj〉 for some
a ∈ Pos(CdA) and b ∈ Pos(CdB). If η > 0 and
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for all a ∈ Pos(CdA) and b ∈ Pos(CdB) such
that Gii > 0 for all i ∈ {1, . . . , n}, then η
satisfies the nonlocality constraint for S.

Information Gain / Disturbance Tradeoff
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Information gain: Disturbance:

ε = max
k

p(ψk|m) −
1
n

δ = max
i,j
|〈φi|φj〉|
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Main Result

Theorem. Let S ⊂ CdA ⊗ CdB be a set of n
quantum states. If η satisfies the nonlocality
constraint for S, then any LOCC protocol
for discriminating states from S errs with
probability

perror ≥
2
27
η2

n5

Proof Idea

1. Modify the original protocol so that the
information gain is exactly ε (see [2]):
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2. If information gain is ε, we can find two
distinct post-measurement states |φi〉 and
|φj〉 with overlap δ ≥ ηε

3. Lower bound the error probability using
Helstrom’s bound

Applications

I Domino states:

η =
1
8

perror = 1.96 × 10−8

I θ-rotated domino states:

η =
sin 2θ
227

perror = 2.43 × 10−11 sin2(2θ)

I Domino-type states:

η =
1
4D

perror =
1

216D2(dAdB)5

Definition. An orthonormal product basis
S ⊂ CdA ⊗ CdB is domino-type if its tiling
is irreducible and contains only tiles of size
one and two.

Open Problems

I Devise as generic method as possible for
finding an η satisfying the nonlocality
constraint.

I Find more applications of our framework.
In particular, for cases when S is not a
complete basis.

I Can our framework always be used to
obtain a lower bound on perror whenever
such bound exists?

I Prove stronger bounds on error
probability. In particular, is there a
sequence S1, S2, S3, . . . of sets of product
states such that limk→∞ perror(Sk) = 1?
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