Bound entangled states with secret key and their classical counterpart

Māris Ozols
등 UNIVERSITY OF (1) CAMBRIDGE

Graeme Smith
John Smolin

February 6, 2014

A brief summary

Main result
A new construction of bound entangled states with secret key

Steps involved

1. Understand what is the classical analogue of this
2. Construct a probability distribution $P_{A B E}$ that has the desired properties
3. Set $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$

A brief summary

Main result
A new construction of bound entangled states with secret key

Steps involved

1. Understand what is the classical analogue of this
2. Construct a probability distribution $P_{A B E}$ that has the desired properties
3. Set $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$

The significance of trash in cryptography

Shared entanglement and randomness

- Cryptographic and computational resource

Shared entanglement and randomness

- Cryptographic and computational resource
- Joint state: $|\psi\rangle_{A B E}$ or $P_{A B E}$

Shared entanglement and randomness

- Cryptographic and computational resource
- Joint state: $|\psi\rangle_{A B E}$ or $P_{A B E}$
- When is such resource useful?

Perfect resources

When is $P_{A B E}$ a perfect resource?

1. Identical for A and B
2. Uniformly random
3. Private from E

Perfect resources

When is $P_{A B E}$ a perfect resource?

1. Identical for A and B
2. Uniformly random
3. Private from E

$$
\begin{aligned}
P_{A B E} & =\mathrm{KEY}_{A B} \otimes \mathrm{TRASH}_{E} \\
\mathrm{KEY}_{A B} & = \begin{cases}0_{A} 0_{B} & \text { w.p. } 1 / 2 \\
1_{A} 1_{B} & \text { w.p. } 1 / 2\end{cases}
\end{aligned}
$$

Perfect resources

When is $P_{A B E}$ a perfect resource?

1. Identical for A and B
2. Uniformly random
3. Private from E

$$
\begin{aligned}
P_{A B E} & =\mathrm{KEY}_{A B} \otimes \mathrm{TRASH}_{E} \\
\mathrm{KEY}_{A B} & = \begin{cases}0_{A} 0_{B} & \text { w.p. } 1 / 2 \\
1_{A} 1_{B} & \text { w.p. } 1 / 2\end{cases} \\
|\psi\rangle_{A B E} & =|\mathrm{KEY}\rangle_{A B} \otimes|\mathrm{TRASH}\rangle_{E} \\
|\mathrm{KEY}\rangle_{A B} & =\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right)
\end{aligned}
$$

Distillation

Distillation

Distillation

Distillation

Entanglement distillation rate
$D\left(|\psi\rangle_{A B E}\right):=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\#\right.$ of $|K E Y\rangle_{A B}$ from $|\psi\rangle_{A B E}^{\otimes n}$ via LOCC $)$

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right)$ - key distillation rate

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right)$ - key distillation rate

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right) \geq D\left(|\psi\rangle_{A B E}\right)$

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right) \geq D\left(|\psi\rangle_{A B E}\right)$

Bound entanglement $|\psi\rangle_{A B E}$ is entangled
but $D\left(|\psi\rangle_{A B E}\right)=0$

More distillation rates

- $D\left(|\psi\rangle_{A B E}\right)$ - entanglement distillation rate
- $K\left(P_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right)$ - key distillation rate
- $K\left(|\psi\rangle_{A B E}\right) \geq D\left(|\psi\rangle_{A B E}\right)$

Bound entanglement $|\psi\rangle_{A B E}$ is entangled but $D\left(|\psi\rangle_{A B E}\right)=0$

Private bound entanglement $|\psi\rangle_{A B E}$ is bound entangled but $K\left(|\psi\rangle_{A B E}\right)>0$ [HHHO05]

Entanglement vs classical key

Compare

$$
\begin{aligned}
& \left|\Psi_{1}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E} \\
& \left|\Psi_{2}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}
\end{aligned}
$$

Entanglement vs classical key

Compare

$$
\begin{aligned}
& \left|\Psi_{1}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E} \\
& \left|\Psi_{2}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}
\end{aligned}
$$

Observe

- If T_{A} and T_{B} are discarded, $\left|\Psi_{1}\right\rangle$ contains a quantum $|\mathrm{KEY}\rangle$ whereas $\left|\Psi_{2}\right\rangle$ contains only a classical KEY

Entanglement vs classical key

$$
T_{A} T_{B}
$$

Compare

$$
\begin{aligned}
& \left|\Psi_{1}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E} \\
& \left|\Psi_{2}\right\rangle:=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}
\end{aligned}
$$

Observe

- If T_{A} and T_{B} are discarded, $\left|\Psi_{1}\right\rangle$ contains a quantum $|\mathrm{KEY}\rangle$ whereas $\left|\Psi_{2}\right\rangle$ contains only a classical KEY
- Quantum $|\mathrm{KEY}\rangle$ is immune against Eve accessing T_{A} and T_{B} (due to monogamy of entanglement)

Distillation with remanent devices

Distillation with remanent devices

Extra assumption

- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep only the key

Distillation with remanent devices

Extra assumption

- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep only the key

Distillation with remanent devices

Extra assumption

- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep only the key

Quantum distillation

Classical distillation

$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E}$
entangled key
$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}$ classical key

$\frac{1}{2}\left(00_{A B}+11_{A B}\right) \otimes \varphi_{T_{A} T_{B}} \otimes \phi_{E}$ classical key?
$\frac{1}{2}\left(00_{A B} \otimes \varphi_{T_{A} T_{B}}+11_{A B} \otimes \varphi_{T_{A} T_{B}}^{\perp}\right) \otimes \phi_{E}$ classical key?

Quantum distillation

Classical distillation

$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E}$ entangled key

$$
\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}
$$ classical key

$\frac{1}{2}\left(00_{A B}+11_{A B}\right) \otimes \varphi_{T_{A} T_{B}} \otimes \phi_{E}$ classical key?

$$
\frac{1}{2}\left(00_{A B} \otimes \varphi_{T_{A} T_{B}}+11_{A B} \otimes \varphi_{T_{A} T_{B}}^{\perp}\right) \otimes \phi_{E}
$$ classical key?

Private randomness

- There are two types of private randomness!

Quantum distillation

$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E}$ entangled key
$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}$ classical key

Classical distillation

$$
\frac{1}{2}\left(00_{A B}+11_{A B}\right) \otimes \varphi_{T_{A} T_{B}} \otimes \phi_{E}
$$ classical key?

$\frac{1}{2}\left(00_{A B} \otimes \varphi_{T_{A} T_{B}}+11_{A B} \otimes \varphi_{T_{A}}^{\perp} T_{B}\right) \otimes \phi_{E}$ classical key?

Private randomness

- There are two types of private randomness!
- Classical analog of entanglement [CP02] is private randomness that is distilled on remanent devices

Quantum distillation

$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}+|11\rangle_{A B}\right) \otimes|\varphi\rangle_{T_{A} T_{B}} \otimes|\phi\rangle_{E}$ entangled key
$\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}|\varphi\rangle_{T_{A} T_{B}}+|11\rangle_{A B}\left|\varphi^{\perp}\right\rangle_{T_{A} T_{B}}\right) \otimes|\phi\rangle_{E}$ classical key

Classical distillation

$$
\frac{1}{2}\left(00_{A B}+11_{A B}\right) \otimes \varphi_{T_{A} T_{B}} \otimes \phi_{E}
$$ classical key?

$\frac{1}{2}\left(00_{A B} \otimes \varphi_{T_{A} T_{B}}+11_{A B} \otimes \varphi_{T_{A} T_{B}}^{\perp}\right) \otimes \phi_{E}$ classical key?

Private randomness

- There are two types of private randomness!
- Classical analog of entanglement [CP02] is private randomness that is distilled on remanent devices
- This resource needs a new name...

cl[assical] en[t]anglement
 $=$

 enclanglementRemanent devices
Regular devices

T_{A}
T_{B}

Remanent devices
Regular devices

$T_{A} T_{B}$

T_{A}
T_{B}

Private bound entanglement
$D\left(|\psi\rangle_{A B E}\right)=0$ but $K\left(|\psi\rangle_{A B E}\right)>0$

Private bound enclanglement
$D\left(P_{A B E}\right)=0$ but $K\left(P_{A B E}\right)>0$

Main results

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Theorem 2
There exist quantical distributions $P_{A B E}$ with $D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Main results

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Theorem 2
There exist quantical distributions $P_{A B E}$ with $D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Corollaries

1. New construction of private bound entanglement
2. Noise helps in one-way classical key distillation

quant[um]

$+$

[class]ical

$=$

quantical

Quantical distributions / states

$P_{A B E}$ is quantical if any single party's state can be unambiguously determined by the rest of the parties:*

$$
\begin{aligned}
& \forall b, e:|\{a: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, b:|\{e: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, e:|\{b: p(a, b, e) \neq 0\}| \leq 1
\end{aligned}
$$

*Similar distributions have appeared in [OSW05, CEH^{+}07]

Quantical distributions / states

$P_{A B E}$ is quantical if any single party's state can be unambiguously determined by the rest of the parties:*

$$
\begin{aligned}
& \forall b, e:|\{a: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, b:|\{e: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, e:|\{b: p(a, b, e) \neq 0\}| \leq 1
\end{aligned}
$$

If $P_{A B E}$ is quantical, we call $|\psi\rangle_{A B E}:=\sqrt{P_{A B E}}$ quantical too
*Similar distributions have appeared in [OSW05, CEH^{+}07]

Quantical distributions / states

$P_{A B E}$ is quantical if any single party's state can be unambiguously determined by the rest of the parties:*

$$
\begin{aligned}
& \forall b, e:|\{a: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, b:|\{e: p(a, b, e) \neq 0\}| \leq 1 \\
& \forall a, e:|\{b: p(a, b, e) \neq 0\}| \leq 1
\end{aligned}
$$

If $P_{A B E}$ is quantical, we call $|\psi\rangle_{A B E}:=\sqrt{P_{A B E}}$ quantical too
Dual nature

- Quantical $P_{A B E}$ and $|\psi\rangle_{A B E}$ describe the same entity
- Entropic quantities for $P_{A B E}$ and $|\psi\rangle_{A B E}$ agree
- Quantical $P_{A B E}$ has a "classical Schmidt decomposition" w.r.t. any bipartition
*Similar distributions have appeared in [OSW05, CEH^{+}07]

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Proof idea

1. Classical protocol can be promoted to a quantum one

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Proof idea

1. Classical protocol can be promoted to a quantum one
2. $P_{A B E}$ remains quantical throughout the protocol

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Proof idea

1. Classical protocol can be promoted to a quantum one
2. $P_{A B E}$ remains quantical throughout the protocol
3. Entropic quantities for $P_{A B E}$ and $|\psi\rangle_{A B E}$ agree

Theorem 1
If $|\psi\rangle_{A B E}=\sqrt{P_{A B E}}$ is quantical then

- $D\left(\psi_{A B E}\right) \geq D\left(P_{A B E}\right)$ and
- $K\left(\psi_{A B E}\right) \geq K\left(P_{A B E}\right)$

Proof idea

1. Classical protocol can be promoted to a quantum one
2. $P_{A B E}$ remains quantical throughout the protocol
3. Entropic quantities for $P_{A B E}$ and $|\psi\rangle_{A B E}$ agree
4. Promoted protocol achieves the same rate

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Proof idea

- Choose $P_{A B E}$ so that $\rho_{A B}:=\operatorname{Tr}_{E}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B E}\right)\right.$ is PT-invariant

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Proof idea

- Choose $P_{A B E}$ so that $\rho_{A B}:=\operatorname{Tr}_{E}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B E}\right)\right.$ is PT-invariant
- $\rho_{A B}^{\Gamma}=\rho_{A B} \succeq 0$, hence $\rho_{A B}$ is PPT

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Proof idea

- Choose $P_{A B E}$ so that $\rho_{A B}:=\operatorname{Tr}_{E}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B E}\right)\right.$ is PT-invariant
- $\rho_{A B}^{\Gamma}=\rho_{A B} \succeq 0$, hence $\rho_{A B}$ is PPT
- $D\left(P_{A B E}\right)=0$, since $D\left(P_{A B E}\right) \leq D\left(\psi_{A B E}\right)=0$

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Proof idea

- Choose $P_{A B E}$ so that $\rho_{A B}:=\operatorname{Tr}_{E}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B E}\right)\right.$ is PT-invariant
- $\rho_{A B}^{\Gamma}=\rho_{A B} \succeq 0$, hence $\rho_{A B}$ is PPT
- $D\left(P_{A B E}\right)=0$, since $D\left(P_{A B E}\right) \leq D\left(\psi_{A B E}\right)=0$
- One-way distillable key:

$$
K\left(P_{A B E}\right) \geq \max _{A \rightarrow X}[I(X ; B)-I(X ; E)]
$$

Theorem 2
There exist quantical distributions $P_{A B E}$ with
$D\left(P_{A B E}\right)=0$ and $K\left(P_{A B E}\right)>0$

Proof idea

- Choose $P_{A B E}$ so that $\rho_{A B}:=\operatorname{Tr}_{E}\left(|\psi\rangle\left\langle\left.\psi\right|_{A B E}\right)\right.$ is PT-invariant
- $\rho_{A B}^{\Gamma}=\rho_{A B} \succeq 0$, hence $\rho_{A B}$ is PPT
- $D\left(P_{A B E}\right)=0$, since $D\left(P_{A B E}\right) \leq D\left(\psi_{A B E}\right)=0$
- One-way distillable key:

$$
K\left(P_{A B E}\right) \geq \max _{A \rightarrow X}[I(X ; B)-I(X ; E)]
$$

- Choose $|X|=2$ and do numerics

Recipe for quanticality and PT-invariance

Recipe for quanticality and PT-invariance

$$
\begin{array}{r}
\left(a|00\rangle_{A B}+b|01\rangle_{A B}\right)|x\rangle_{E} \\
+c|11\rangle_{A B}|y\rangle_{E}
\end{array}
$$

Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

Recipe for quanticality and PT-invariance

$$
\begin{array}{r}
\left(a|00\rangle_{A B}+b|11\rangle_{A B}\right)|x\rangle_{E} \\
+c|01\rangle_{A B}|y\rangle_{E}
\end{array}
$$

Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

Recipe for quanticality and PT-invariance

$$
\begin{array}{r}
\left(a|00\rangle_{A B}+b|11\rangle_{A B}\right)|x\rangle_{E} \\
+c|01\rangle_{A B}|y\rangle_{E}
\end{array}
$$

Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

PT-invariant

- Union of crosses
- Each cross has zero determinant

Recipe for quanticality and PT-invariance

Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

PT-invariant

- Union of crosses
- Each cross has zero determinant

Example in 3×3

$$
\begin{aligned}
& \text { c } \\
& P_{A B}=\left(\begin{array}{lll}
0.167184 & 0.171529 & 0.001243 \\
0.089041 & 0.091355 & 0.017492 \\
0.441714 & 0.017157 & 0.003285
\end{array}\right) \\
& D\left(P_{A B E}\right)=0 \text { but } K\left(P_{A B E}\right) \geq 0.0057852
\end{aligned}
$$

Example in 4×4

$$
\begin{aligned}
& \text { Better than [HPHH08] } \\
& K\left(P_{A B E}\right) \geq 0.0213399
\end{aligned}
$$

Example in 4×5

Conclusions

Results

- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Conclusions

Results

- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Open questions

- How does our construction relate to [HHHO05]?
- Is the optimal protocol for distilling entanglement or key from a quantical state also quantical?

Conclusions

Results

- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Open questions

- How does our construction relate to [HHHO05]?
- Is the optimal protocol for distilling entanglement or key from a quantical state also quantical?

Work in progress...

- Quantical mechanics and a classical analogue of superactivation (of the quantical capacity)

That's it!

Bibliography I

[CEH ${ }^{+}$07] Matthias Christandl, Artur Ekert, Michał Horodecki, Paweł Horodecki, Jonathan Oppenheim, and Renato Renner.
Unifying classical and quantum key distillation.
In Salil P. Vadhan, editor, Theory of Cryptography, volume 4392 of Lecture Notes in Computer Science, pages 456-478. Springer, 2007.
arXiv:quant-ph/0608199,
doi:10.1007/978-3-540-70936-7_25.
[CP02] Daniel Collins and Sandu Popescu.
Classical analog of entanglement.
Phys. Rev. A, 65(3):032321, Feb 2002.
arXiv:quant-ph/0107082,doi:10.1103/PhysRevA.65.032321.
[HHHO05] Karol Horodecki, Michał Horodecki, Paweł Horodecki, and Jonathan
Oppenheim.
Secure key from bound entanglement.
Phys. Rev. Lett., 94(16):160502, Apr 2005.
arXiv:quant-ph/0309110,
doi:10.1103/PhysRevLett.94.160502.

Bibliography II

[HPHH08] Karol Horodecki, Łukasz Pankowski, Michał Horodecki, and Paweł Horodecki.
Low-dimensional bound entanglement with one-way distillable cryptographic key.
Information Theory, IEEE Transactions on, 54(6):2621-2625, 2008.
arXiv:quant-ph/0506203, doi:10.1109/TIT.2008.921709.
[OSW05] Jonathan Oppenheim, Robert W. Spekkens, and Andreas Winter.
A classical analogue of negative information. 2005.

```
arXiv:quant-ph/0511247.
```

[PBR12] Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph.
On the reality of the quantum state.
Nature Physics, 8(6):475-478, 2012.
arXiv:1111.3328, doi:10.1038/nphys2309.
[Spe07] Robert W. Spekkens.
Evidence for the epistemic view of quantum staappendices oftes: A toy theory.
Phys. Rev. A, 75(3):032110, Mar 2007.
arXiv:quant-ph/0401052,doi:10.1103/PhysRevA.75.032110.

