Bound entangled states with secret key and their classical counterpart

Graeme Smith John Smolin

	_		

February 6, 2014

A brief summary

Main result

A new construction of bound entangled states with secret key

Steps involved

- 1. Understand what is the classical analogue of this
- 2. Construct a probability distribution P_{ABE} that has the desired properties

3. Set
$$|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$$

A brief summary

Main result

A new construction of bound entangled states with secret key

Steps involved

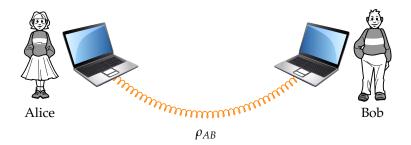
- 1. Understand what is the classical analogue of this
- 2. Construct a probability distribution P_{ABE} that has the desired properties

3. Set
$$|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$$

The significance of trash in cryptography

Shared entanglement and randomness

Cryptographic and computational resource

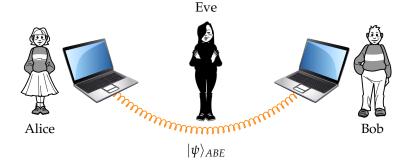


Shared entanglement and randomness

- Cryptographic and computational resource
- Joint state: $|\psi\rangle_{ABE}$ or P_{ABE}

Shared entanglement and randomness

- Cryptographic and computational resource
- Joint state: $|\psi\rangle_{ABE}$ or P_{ABE}
- When is such resource useful?



Perfect resources

When is P_{ABE} a perfect resource?

- 1. Identical for *A* and *B*
- 2. Uniformly random
- 3. Private from *E*

Perfect resources

When is P_{ABE} a perfect resource?

- 1. Identical for *A* and *B*
- 2. Uniformly random
- 3. Private from *E*

$$P_{ABE} = \text{KEY}_{AB} \otimes \text{TRASH}_{E}$$
$$\text{KEY}_{AB} = \begin{cases} 0_{A}0_{B} \text{ w.p. } 1/2\\ 1_{A}1_{B} \text{ w.p. } 1/2 \end{cases}$$

Perfect resources

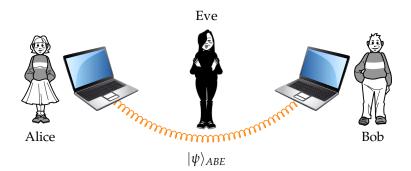
When is P_{ABE} a perfect resource?

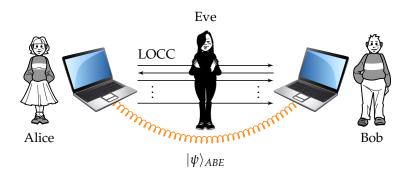
- 1. Identical for *A* and *B*
- 2. Uniformly random
- 3. Private from *E*

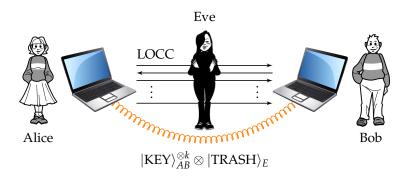
$$P_{ABE} = \text{KEY}_{AB} \otimes \text{TRASH}_{E}$$
$$\text{KEY}_{AB} = \begin{cases} 0_{A}0_{B} \text{ w.p. } 1/2\\ 1_{A}1_{B} \text{ w.p. } 1/2 \end{cases}$$

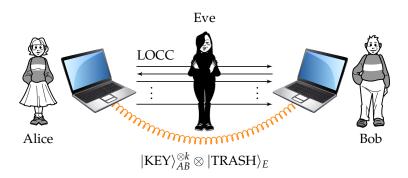
$$|\psi\rangle_{ABE} = |\text{KEY}\rangle_{AB} \otimes |\text{TRASH}\rangle_{E}$$

 $|\text{KEY}\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle_{AB} + |11\rangle_{AB})$





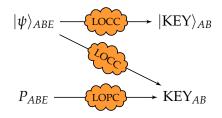




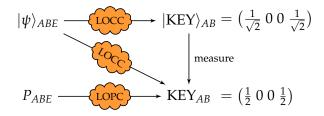
Entanglement distillation rate

$$D(|\psi\rangle_{ABE}) := \lim_{n \to \infty} \frac{1}{n} \Big(\# \text{ of } |\text{KEY}\rangle_{AB} \text{ from } |\psi\rangle_{ABE}^{\otimes n} \text{ via LOCC} \Big)$$

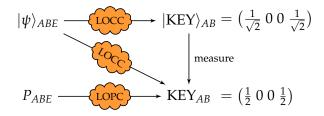
- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate



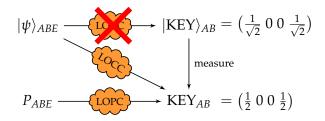
- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE})$ key distillation rate



- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE})$ key distillation rate

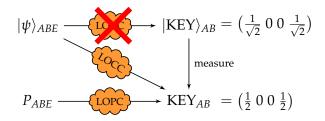


- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE}) \ge D(|\psi\rangle_{ABE})$



- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE}) \ge D(|\psi\rangle_{ABE})$

Bound entanglement $|\psi\rangle_{ABE}$ is entangled but $D(|\psi\rangle_{ABE}) = 0$



- $D(|\psi\rangle_{ABE})$ entanglement distillation rate
- $K(P_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE})$ key distillation rate
- $K(|\psi\rangle_{ABE}) \ge D(|\psi\rangle_{ABE})$

Bound entanglement $|\psi\rangle_{ABE}$ is entangled but $D(|\psi\rangle_{ABE}) = 0$

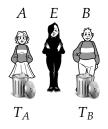
Private bound entanglement $|\psi\rangle_{ABE}$ is bound entangled but $K(|\psi\rangle_{ABE}) > 0$ [HHHO05]

Entanglement vs classical key

Compare

$$egin{aligned} |\Psi_1
angle &:= rac{1}{\sqrt{2}} \Big(|00
angle_{AB} + |11
angle_{AB}\Big) \otimes |arphi
angle_{T_AT_B} \otimes |arphi
angle_E \ |\Psi_2
angle &:= rac{1}{\sqrt{2}} \Big(|00
angle_{AB}|arphi
angle_{T_AT_B} + |11
angle_{AB}|arphi^{\perp}
angle_{T_AT_B}\Big) \otimes |arphi
angle_E \end{aligned}$$

Entanglement vs classical key



Compare

$$\begin{split} |\Psi_1\rangle &:= \frac{1}{\sqrt{2}} \Big(|00\rangle_{AB} + |11\rangle_{AB} \Big) \otimes |\varphi\rangle_{T_A T_B} \otimes |\phi\rangle_E \\ |\Psi_2\rangle &:= \frac{1}{\sqrt{2}} \Big(|00\rangle_{AB} |\varphi\rangle_{T_A T_B} + |11\rangle_{AB} |\varphi^{\perp}\rangle_{T_A T_B} \Big) \otimes |\phi\rangle_E \end{split}$$

Observe

• If T_A and T_B are discarded, $|\Psi_1\rangle$ contains a quantum $|\text{KEY}\rangle$ whereas $|\Psi_2\rangle$ contains only a classical KEY

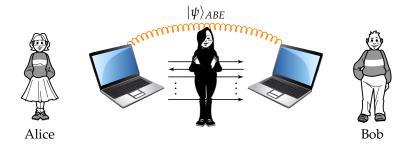
Entanglement vs classical key

Compare

$$egin{aligned} |\Psi_1
angle &:= rac{1}{\sqrt{2}} \Big(|00
angle_{AB} + |11
angle_{AB}\Big) \otimes |arphi
angle_{T_AT_B} \otimes |arphi
angle_E \ |\Psi_2
angle &:= rac{1}{\sqrt{2}} \Big(|00
angle_{AB}|arphi
angle_{T_AT_B} + |11
angle_{AB}|arphi^{\perp}
angle_{T_AT_B}\Big) \otimes |arphi
angle_E \end{aligned}$$

Observe

- If T_A and T_B are discarded, $|\Psi_1\rangle$ contains a quantum $|\text{KEY}\rangle$ whereas $|\Psi_2\rangle$ contains only a classical KEY
- Quantum $|\text{KEY}\rangle$ is immune against Eve accessing T_A and T_B (due to monogamy of entanglement)

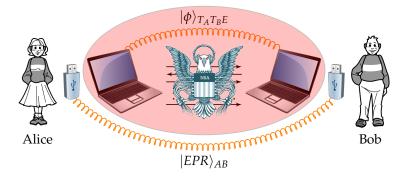


Extra assumption

- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep *only* the key

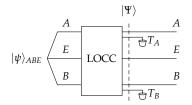
Extra assumption

- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep *only* the key



Extra assumption

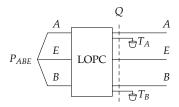
- At the end of the protocol Eve confiscates both devices; she can recover all information that was erased
- Alice and Bob can keep *only* the key



 $\frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB} \right) \otimes |\varphi\rangle_{T_A T_B} \otimes |\phi\rangle_E$ *entangled key*

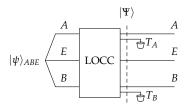
 $\frac{1}{\sqrt{2}} \Big(|00\rangle_{AB} |\varphi\rangle_{T_A T_B} + |11\rangle_{AB} |\varphi^{\perp}\rangle_{T_A T_B} \Big) \otimes |\phi\rangle_E$ *classical key*

Classical distillation

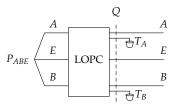


 $\frac{1}{2} \left(00_{AB} + 11_{AB} \right) \otimes \varphi_{T_A T_B} \otimes \phi_E$ *classical key?*

 $rac{1}{2} \Big(00_{AB} \otimes arphi_{T_A T_B} + 11_{AB} \otimes arphi_{T_A T_B}^{\perp} \Big) \otimes \phi_E \ classical \ key?$



Classical distillation



$$\frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB} \right) \otimes |\varphi\rangle_{T_A T_B} \otimes |\phi\rangle_E$$

entangled key

 $\frac{1}{\sqrt{2}} \Big(|00\rangle_{AB} |\varphi\rangle_{T_A T_B} + |11\rangle_{AB} |\varphi^{\perp}\rangle_{T_A T_B} \Big) \otimes |\phi\rangle_E \\ classical \ key$

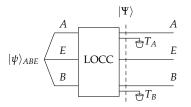
$$\frac{1}{2} \left(00_{AB} + 11_{AB}
ight) \otimes \varphi_{T_A T_B} \otimes \phi_E$$

classical key?

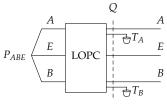
$$\frac{\frac{1}{2} \left(00_{AB} \otimes \varphi_{T_A T_B} + 11_{AB} \otimes \varphi_{T_A T_B}^{\perp}\right) \otimes \phi_E}{classical \ key?}$$

Private randomness

There are two types of private randomness!



Classical distillation

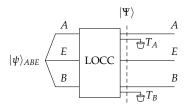


$$\begin{array}{ll} \frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB} \right) \otimes |\varphi\rangle_{T_{A}T_{B}} \otimes |\phi\rangle_{E} & \frac{1}{2} \left(00_{AB} + 11_{AB} \right) \otimes \varphi_{T_{A}T_{B}} \otimes \phi_{E} \\ entangled \ key & classical \ key? \\ \left(|00\rangle_{AB} |\varphi\rangle_{T_{A}T_{B}} + |11\rangle_{AB} |\varphi^{\perp}\rangle_{T_{A}T_{B}} \right) \otimes |\phi\rangle_{E} & \frac{1}{2} \left(00_{AB} \otimes \varphi_{T_{A}T_{B}} + 11_{AB} \otimes \varphi_{T_{A}T_{B}}^{\perp} \right) \otimes \phi_{E} \\ classical \ key & classical \ key? \end{array}$$

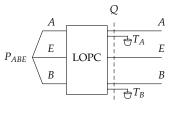
Private randomness

 $\frac{1}{\sqrt{2}}$

- There are two types of private randomness!
- Classical analog of entanglement [CP02] is private randomness that is distilled on remanent devices



Classical distillation



$$\begin{array}{c} \frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB} \right) \otimes |\varphi\rangle_{T_A T_B} \otimes |\phi\rangle_E & \frac{1}{2} \left(00_{AB} + 11_{AB} \right) \otimes \varphi_{T_A T_B} \otimes \phi_E \\ entangled \ key & classical \ key? \end{array}$$

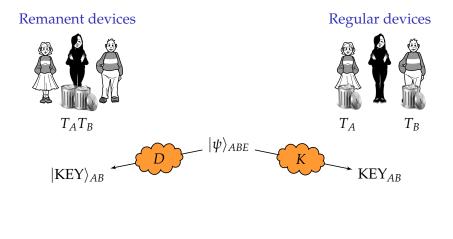
$$\begin{array}{c} \frac{1}{\sqrt{2}} \left(|00\rangle_{AB} |\varphi\rangle_{T_A T_B} + |11\rangle_{AB} |\varphi^{\perp}\rangle_{T_A T_B} \right) \otimes |\phi\rangle_E & \frac{1}{2} \left(00_{AB} \otimes \varphi_{T_A T_B} + 11_{AB} \otimes \varphi_{T_A T_B}^{\perp} \right) \otimes \phi_E \\ classical \ key & classical \ key? \end{array}$$

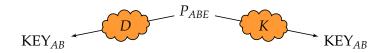
Private randomness

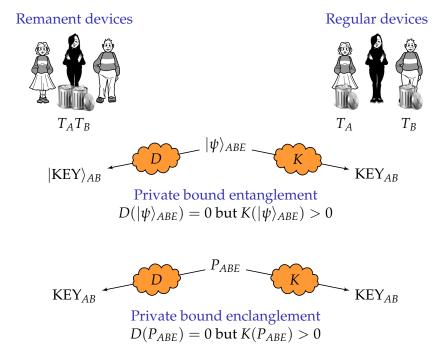
ν

- There are two types of private randomness!
- Classical analog of entanglement [CP02] is private randomness that is distilled on remanent devices
- This resource needs a new name...

cl[assical] *en*[t]*anglement* = enclanglement







Main results

Theorem 1 If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Theorem 2

There exist quantical distributions P_{ABE} with $D(P_{ABE}) = 0$ and $K(P_{ABE}) > 0$

Main results

Theorem 1 If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Theorem 2

There exist quantical distributions P_{ABE} with $D(P_{ABE}) = 0$ and $K(P_{ABE}) > 0$

Corollaries

- 1. New construction of private bound entanglement
- 2. Noise helps in one-way classical key distillation

quant[um] + [class]*ical*

Quantical distributions / states

 P_{ABE} is *quantical* if any single party's state can be unambiguously determined by the rest of the parties:*

$$\begin{aligned} \forall b, e : |\{a : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, b : |\{e : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, e : |\{b : p(a, b, e) \neq 0\}| &\leq 1 \end{aligned}$$

*Similar distributions have appeared in [OSW05, CEH+07]

Quantical distributions / states

 P_{ABE} is *quantical* if any single party's state can be unambiguously determined by the rest of the parties:*

$$\begin{aligned} \forall b, e : |\{a : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, b : |\{e : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, e : |\{b : p(a, b, e) \neq 0\}| &\leq 1 \end{aligned}$$

If P_{ABE} is quantical, we call $|\psi\rangle_{ABE} := \sqrt{P_{ABE}}$ quantical too

*Similar distributions have appeared in [OSW05, CEH+07]

Quantical distributions / states

 P_{ABE} is *quantical* if any single party's state can be unambiguously determined by the rest of the parties:*

$$\begin{aligned} \forall b, e : |\{a : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, b : |\{e : p(a, b, e) \neq 0\}| &\leq 1 \\ \forall a, e : |\{b : p(a, b, e) \neq 0\}| &\leq 1 \end{aligned}$$

If P_{ABE} is quantical, we call $|\psi\rangle_{ABE} := \sqrt{P_{ABE}}$ quantical too

Dual nature

- Quantical P_{ABE} and $|\psi\rangle_{ABE}$ describe the same entity
- Entropic quantities for P_{ABE} and $|\psi\rangle_{ABE}$ agree
- Quantical P_{ABE} has a "classical Schmidt decomposition" w.r.t. any bipartition

*Similar distributions have appeared in [OSW05, CEH+07]

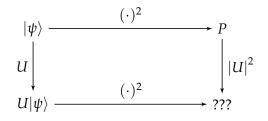
- If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then
 - $D(\psi_{ABE}) \ge D(P_{ABE})$ and
 - $K(\psi_{ABE}) \ge K(P_{ABE})$

If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Proof idea

1. Classical protocol can be promoted to a quantum one

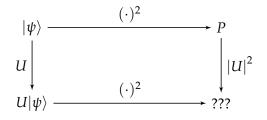


If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Proof idea

- 1. Classical protocol can be promoted to a quantum one
- 2. P_{ABE} remains quantical throughout the protocol

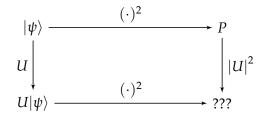


If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Proof idea

- 1. Classical protocol can be promoted to a quantum one
- 2. P_{ABE} remains quantical throughout the protocol
- 3. Entropic quantities for P_{ABE} and $|\psi\rangle_{ABE}$ agree

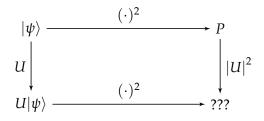


If $|\psi\rangle_{ABE} = \sqrt{P_{ABE}}$ is quantical then

- $D(\psi_{ABE}) \ge D(P_{ABE})$ and
- $K(\psi_{ABE}) \ge K(P_{ABE})$

Proof idea

- 1. Classical protocol can be promoted to a quantum one
- 2. P_{ABE} remains quantical throughout the protocol
- 3. Entropic quantities for P_{ABE} and $|\psi\rangle_{ABE}$ agree
- 4. Promoted protocol achieves the same rate



Proof idea

• Choose P_{ABE} so that $\rho_{AB} := \text{Tr}_E(|\psi\rangle\langle\psi|_{ABE})$ is PT-invariant

Proof idea

• Choose P_{ABE} so that $\rho_{AB} := \text{Tr}_E(|\psi\rangle\langle\psi|_{ABE})$ is PT-invariant

•
$$\rho_{AB}^{\Gamma} = \rho_{AB} \succeq 0$$
, hence ρ_{AB} is PPT

Proof idea

• Choose P_{ABE} so that $\rho_{AB} := \text{Tr}_E(|\psi\rangle\langle\psi|_{ABE})$ is PT-invariant

•
$$\rho_{AB}^{\Gamma} = \rho_{AB} \succeq 0$$
, hence ρ_{AB} is PPT

► $D(P_{ABE}) = 0$, since $D(P_{ABE}) \le D(\psi_{ABE}) = 0$

Proof idea

• Choose P_{ABE} so that $\rho_{AB} := \text{Tr}_E(|\psi\rangle\langle\psi|_{ABE})$ is PT-invariant

•
$$\rho_{AB}^{\Gamma} = \rho_{AB} \succeq 0$$
, hence ρ_{AB} is PPT

► $D(P_{ABE}) = 0$, since $D(P_{ABE}) \le D(\psi_{ABE}) = 0$

One-way distillable key:

$$K(P_{ABE}) \ge \max_{A \to X} \left[I(X;B) - I(X;E) \right]$$

Proof idea

• Choose P_{ABE} so that $\rho_{AB} := \text{Tr}_E(|\psi\rangle\langle\psi|_{ABE})$ is PT-invariant

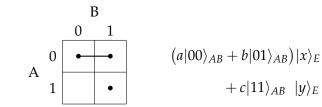
•
$$\rho_{AB}^{\Gamma} = \rho_{AB} \succeq 0$$
, hence ρ_{AB} is PPT

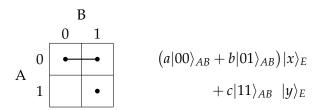
• $D(P_{ABE}) = 0$, since $D(P_{ABE}) \le D(\psi_{ABE}) = 0$

One-way distillable key:

$$K(P_{ABE}) \ge \max_{A \to X} \left[I(X;B) - I(X;E) \right]$$

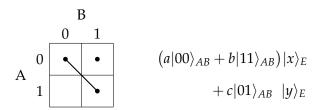
• Choose |X| = 2 and do numerics





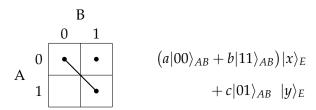
Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)



Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

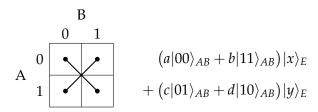


Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

PT-invariant

- Union of crosses
- Each cross has zero determinant



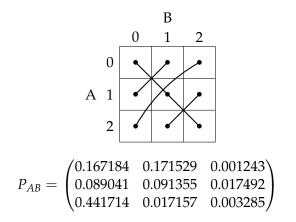
Quantical

- Union of disjoint cliques
- Each clique is "diagonal" (no repeated rows or columns)

PT-invariant

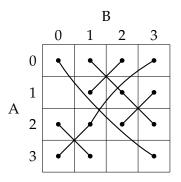
- Union of crosses
- Each cross has zero determinant

Example in 3×3



 $D(P_{ABE}) = 0$ but $K(P_{ABE}) \ge 0.0057852$

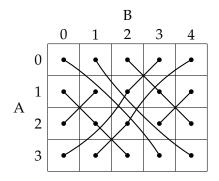
Example in 4×4



 $K(P_{ABE}) \geq 0.0293914$

Better than [HPHH08] $K(P_{ABE}) \ge 0.0213399$

Example in 4×5



 $K(P_{ABE}) \ge 0.0480494$

Conclusions

Results

- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Conclusions

Results

- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Open questions

- How does our construction relate to [HHHO05]?
- Is the optimal protocol for distilling entanglement or key from a quantical state also quantical?

Conclusions

Results

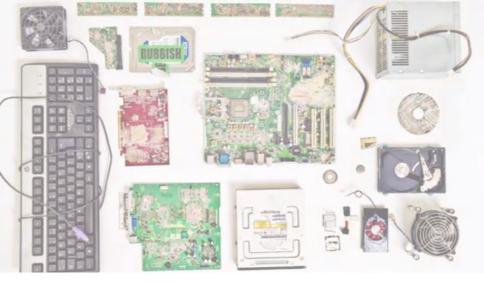
- New construction of private bound entanglement
- Adding noise can help in one-way classical key distillation

Open questions

- How does our construction relate to [HHHO05]?
- Is the optimal protocol for distilling entanglement or key from a quantical state also quantical?

Work in progress...

 Quantical mechanics and a classical analogue of superactivation (of the quantical capacity)



That's it!

Image: destroyed Guardian computer with Snowden files

Bibliography I

[CEH⁺07] Matthias Christandl, Artur Ekert, Michał Horodecki, Paweł Horodecki, Jonathan Oppenheim, and Renato Renner. Unifying classical and quantum key distillation. In Salil P. Vadhan, editor, *Theory of Cryptography*, volume 4392 of *Lecture Notes in Computer Science*, pages 456–478. Springer, 2007. arXiv:quant-ph/0608199, doi:10.1007/978-3-540-70936-7_25.

[CP02] Daniel Collins and Sandu Popescu. Classical analog of entanglement. Phys. Rev. A, 65(3):032321, Feb 2002. arXiv:quant-ph/0107082, doi:10.1103/PhysRevA.65.032321.

[HHH005] Karol Horodecki, Michał Horodecki, Paweł Horodecki, and Jonathan Oppenheim. Secure key from bound entanglement. Phys. Rev. Lett., 94(16):160502, Apr 2005. arXiv:quant-ph/0309110, doi:10.1103/PhysRevLett.94.160502.

Bibliography II

[HPHH08] Karol Horodecki, Łukasz Pankowski, Michał Horodecki, and Paweł Horodecki. Low-dimensional bound entanglement with one-way distillable cryptographic key. Information Theory, IEEE Transactions on, 54(6):2621–2625, 2008. arXiv:quant-ph/0506203,doi:10.1109/TIT.2008.921709. [OSW05] Jonathan Oppenheim, Robert W. Spekkens, and Andreas Winter. A classical analogue of negative information. 2005. arXiv:guant-ph/0511247. [PBR12] Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph. On the reality of the quantum state. Nature Physics, 8(6):475-478, 2012. arXiv:1111.3328, doi:10.1038/nphys2309. [Spe07] Robert W. Spekkens. Evidence for the epistemic view of quantum staappendices oftes: A toy theory. Phys. Rev. A, 75(3):032110, Mar 2007. arXiv:quant-ph/0401052,doi:10.1103/PhysRevA.75.032110.