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A brief summary

Main result
A new construction of bound entangled states with secret key

Steps involved
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2. Construct a probability distribution PABE that has the
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3. Set |ψ〉ABE =

√
PABE
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Perfect resources

When is PABE a perfect resource?

1. Identical for A and B
2. Uniformly random
3. Private from E

PABE = KEYAB ⊗ TRASHE

KEYAB =

{
0A0B w.p. 1/2
1A1B w.p. 1/2

|ψ〉ABE = |KEY〉AB ⊗ |TRASH〉E
|KEY〉AB = 1√
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2
0 0 1√

2

)

=
( 1

2 0 0 1
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I D(|ψ〉ABE) – entanglement distillation rate
I K(PABE) – key distillation rate

I K(|ψ〉ABE) – key distillation rate
I K(|ψ〉ABE) ≥ D(|ψ〉ABE)

Bound entanglement Private bound entanglement
|ψ〉ABE is entangled |ψ〉ABE is bound entangled
but D(|ψ〉ABE) = 0 but K(|ψ〉ABE) > 0 [HHHO05]
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Entanglement vs classical key

A E B

TA TB

TATB

Compare

|Ψ1〉 := 1√
2

(
|00〉AB + |11〉AB

)
⊗ |ϕ〉TATB ⊗ |φ〉E

|Ψ2〉 := 1√
2

(
|00〉AB|ϕ〉TATB + |11〉AB|ϕ⊥〉TATB

)
⊗ |φ〉E

Observe

I If TA and TB are discarded, |Ψ1〉 contains a quantum |KEY〉
whereas |Ψ2〉 contains only a classical KEY

I Quantum |KEY〉 is immune against Eve accessing TA and
TB (due to monogamy of entanglement)
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Main results

Theorem 1
If |ψ〉ABE =

√
PABE is quantical then

I D(ψABE) ≥ D(PABE) and
I K(ψABE) ≥ K(PABE)

Theorem 2
There exist quantical distributions PABE with
D(PABE) = 0 and K(PABE) > 0

Corollaries

1. New construction of private bound entanglement
2. Noise helps in one-way classical key distillation
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Quantical distributions / states
PABE is quantical if any single party’s state can be
unambiguously determined by the rest of the parties:∗

∀b, e : |{a : p(a, b, e) 6= 0}| ≤ 1
∀a, b : |{e : p(a, b, e) 6= 0}| ≤ 1
∀a, e : |{b : p(a, b, e) 6= 0}| ≤ 1

If PABE is quantical, we call |ψ〉ABE :=
√

PABE quantical too

Dual nature
I Quantical PABE and |ψ〉ABE describe the same entity
I Entropic quantities for PABE and |ψ〉ABE agree
I Quantical PABE has a “classical Schmidt decomposition”

w.r.t. any bipartition

∗Similar distributions have appeared in [OSW05, CEH+07]
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If |ψ〉ABE =

√
PABE is quantical then

I D(ψABE) ≥ D(PABE) and
I K(ψABE) ≥ K(PABE)

Proof idea

1. Classical protocol can be promoted to a quantum one
2. PABE remains quantical throughout the protocol
3. Entropic quantities for PABE and |ψ〉ABE agree
4. Promoted protocol achieves the same rate
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Theorem 2
There exist quantical distributions PABE with
D(PABE) = 0 and K(PABE) > 0

Proof idea

I Choose PABE so that ρAB := TrE
(
|ψ〉〈ψ|ABE

)
is PT-invariant

I ρΓ
AB = ρAB � 0, hence ρAB is PPT

I D(PABE) = 0, since D(PABE) ≤ D(ψABE) = 0
I One-way distillable key:

K(PABE) ≥ max
A→X

[
I(X; B)− I(X; E)

]
I Choose |X| = 2 and do numerics
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Recipe for quanticality and PT-invariance
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(
a|00〉AB + b|01〉AB

)
|x〉E

+ c|11〉AB |y〉E

Quantical

I Union of disjoint cliques
I Each clique is “diagonal” (no repeated rows or columns)

PT-invariant
I Union of crosses
I Each cross has zero determinant
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)
|y〉E

Quantical

I Union of disjoint cliques
I Each clique is “diagonal” (no repeated rows or columns)

PT-invariant
I Union of crosses
I Each cross has zero determinant



Example in 3× 3

0 1 2

0

1

2

B

A

PAB =

0.167184 0.171529 0.001243
0.089041 0.091355 0.017492
0.441714 0.017157 0.003285


D(PABE) = 0 but K(PABE) ≥ 0.0057852



Example in 4× 4

0 1 2 3

0

1

2

3

B

A
o

o

K(PABE) ≥ 0.0293914

Better than [HPHH08]
K(PABE) ≥ 0.0213399



Example in 4× 5

0 1 2 3 4

0

1

2

3

B

A

K(PABE) ≥ 0.0480494



Conclusions

Results
I New construction of private bound entanglement
I Adding noise can help in one-way classical key distillation

Open questions

I How does our construction relate to [HHHO05]?
I Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?

Work in progress. . .

I Quantical mechanics and a classical analogue of
superactivation (of the quantical capacity)
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Results
I New construction of private bound entanglement
I Adding noise can help in one-way classical key distillation

Open questions

I How does our construction relate to [HHHO05]?
I Is the optimal protocol for distilling entanglement or key

from a quantical state also quantical?
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That’s it!
Image: destroyed Guardian computer with Snowden files

http://www.theguardian.com/world/video/2014/jan/31/snowden-files-computer-destroyed-guardian-gchq-basement-video
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