
Quantum rejection sampling

Maris Ozols
University of Waterloo

Martin Rötteler Jérémie Roland
NEC Laboratories America Université Libre de Bruxelles

arXiv:1103.2774

http://arxiv.org/abs/1103.2774

Motivation

We started with. . .
Boolean hidden shift problem

I Could be useful for breaking cryptosystems (LFSRs)

I Potential insights into the dihedral hidden subgroup problem

. . . but ended up with

A useful primitive for constructing quantum algorithms:

I Quantum algorithm for linear systems of equations [HHL09]

I Quantum Metropolis algorithm [TOVPV11]

I Preparing PEPS [STV11]

I more. . .

Motivation

We started with. . .
Boolean hidden shift problem

I Could be useful for breaking cryptosystems (LFSRs)

I Potential insights into the dihedral hidden subgroup problem

. . . but ended up with

A useful primitive for constructing quantum algorithms:

I Quantum algorithm for linear systems of equations [HHL09]

I Quantum Metropolis algorithm [TOVPV11]

I Preparing PEPS [STV11]

I more. . .

Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk

I Avg. prob. to accept:
∑

k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk ≤ 1

I Avg. prob. to accept:
∑

k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk ≤ 1, so γ = mink pk/sk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk ≤ 1, so γ = mink pk/sk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk ≤ 1, so γ = mink pk/sk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951

I Has numerous applications:
I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk ≤ 1, so γ = mink pk/sk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉

I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?

I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε

Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:

I w.p. ‖δ‖22 the state collapses to
n∑

k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2

Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:

I w.p. ‖δ‖22 the state collapses to
n∑

k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2

Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:

I w.p. ‖δ‖22 the state collapses to
n∑

k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2

Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:
I w.p. ‖δ‖22 the state collapses to

n∑
k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2

Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2

Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2

Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2

Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2

Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε

and 0 ≤ δk ≤ πk
I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε and 0 ≤ δk ≤ πk

I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε and 0 ≤ δk ≤ πk

I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε and 0 ≤ δk ≤ πk

I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}

I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥
√

1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε and 0 ≤ δk ≤ πk

I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε and 0 ≤ δk ≤ πk

I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)

n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

Applications

Implicit use

I Synthesis of quantum states [Grover, 2000]

I Linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I Speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I New quantum algorithm for the hidden shift problem of any
Boolean function

Future applications

I Preparing PEPS [Schwarz, Temme, Verstraete, 2011]

I More...

Applications

Implicit use

I Synthesis of quantum states [Grover, 2000]

I Linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I Speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I New quantum algorithm for the hidden shift problem of any
Boolean function

Future applications

I Preparing PEPS [Schwarz, Temme, Verstraete, 2011]

I More...

Applications

Implicit use

I Synthesis of quantum states [Grover, 2000]

I Linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I Speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I New quantum algorithm for the hidden shift problem of any
Boolean function

Future applications

I Preparing PEPS [Schwarz, Temme, Verstraete, 2011]

I More...

Applications

Implicit use

I Synthesis of quantum states [Grover, 2000]

I Linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I Speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I New quantum algorithm for the hidden shift problem of any
Boolean function

Future applications

I Preparing PEPS [Schwarz, Temme, Verstraete, 2011]

I More...

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0

x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1n

f(x)

x0

x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0
I Equivalent to Grover’s search: Θ(

√
2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

= 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

= 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉 = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉 = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉

I Apply D := diag
(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉

I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn
2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn
2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)

Hard (delta function) I

All Boolean functions

In total there are 22
n

Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)

Hard (delta function) I

Algorithm for any Boolean function

Resampling approach

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)

Algorithm for any Boolean function

Resampling approach

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)

Algorithm for any Boolean function

Resampling approach

∑
w∈Zn

2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn

2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2

3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis

“Demo” (approximate version)

I Instead of the “flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

“Demo” (approximate version)

I Instead of the “flat” state aim for “approximately flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)

Funding:

