Quantum rejection sampling

Maris Ozols
University of Waterloo

Martin Rötteler
NEC Laboratories America
NEC

Jérémie Roland
Université Libre de Bruxelles
ULB

> arXiv:1103.2774

Motivation

We started with. . . [recall Martin's talk yesterday]
An algorithm for the Boolean hidden shift problem:

- Might be useful for breaking cryptosystems (LFSRs)
- Potential insights into the dihedral hidden subgroup problem

Motivation

We started with. . . [recall Martin's talk yesterday]
An algorithm for the Boolean hidden shift problem:

- Might be useful for breaking cryptosystems (LFSRs)
- Potential insights into the dihedral hidden subgroup problem
... but ended up with
A useful primitive for constructing quantum algorithms:
- Quantum algorithm for linear systems of equations [HHLO9]
- Quantum Metropolis algorithm [TOVPV11]
- Preparing PEPS [STV11]
- more...

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?

Resampling

Classical $\boldsymbol{p} \rightarrow \boldsymbol{s}$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?
- Note: Samples are pairs $(k, \xi(k))$ where $\xi(k)$ is not accessible

Classical rejection sampling

Algorithm

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k}$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$
- Introduced by von Neumann in 1951

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$
- Introduced by von Neumann in 1951
- Has numerous applications:
- Metropolis algorithm [MRRTT53]
- Monte-Carlo simulations
- optimization (simulated annealing), etc.

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Approximate preparation
Task: Prepare $\sqrt{1-\varepsilon}|\sigma\rangle+\sqrt{\varepsilon} \mid$ error \rangle

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Approximate preparation
Task: Prepare $\sqrt{1-\varepsilon}|\sigma\rangle+\sqrt{\varepsilon} \mid$ error \rangle
\Longleftrightarrow Prepare $|\delta\rangle$ with $\sigma \cdot \delta \geq \sqrt{1-\varepsilon}$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

3. Measure the first register:

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

3. Measure the first register:

- w.p. $\|\boldsymbol{\delta}\|_{2}^{2}$ the state collapses to

$$
\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle
$$

where $\hat{\delta}_{k}=\delta_{k} /\|\boldsymbol{\delta}\|_{2}$

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Summary
We can prepare $\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle$ with $O\left(1 /\|\boldsymbol{\delta}\|_{2}\right)$ quantum queries

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Summary
We can prepare $\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle$ with $O\left(1 /\|\boldsymbol{\delta}\|_{2}\right)$ quantum queries

Goal: preparing $|\sigma\rangle$

- What δ should we choose?
- We are done if $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ where $\hat{\boldsymbol{\delta}}=\boldsymbol{\delta} /\|\boldsymbol{\delta}\|_{2}$

Optimization

Problem
$-\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$

Optimization

Optimization

Problem

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k} \circ_{\circ}^{\circ}$
- This can be stated as an SDP

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$
- Choose $\bar{\gamma}=\max \gamma$ st. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \geq \sqrt{1-\varepsilon}$

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$
- Choose $\bar{\gamma}=\max \gamma$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \geq \sqrt{1-\varepsilon}$

Main theorem
The quantum query complexity of the ε-approximate $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta\left(1 /\|\boldsymbol{\delta}(\bar{\gamma})\|_{2}\right)$

Weak vs. strong quantum rejection sampling

Weak quantum resampling problem

- Given: Description of $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$

Oracle $O:|0\rangle \mapsto|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$

Strong quantum resampling problem

- Given: Description of entry-wise ratios $\sigma / \boldsymbol{\pi}$

Reflection $\operatorname{ref}_{|\pi\rangle}=I-2|\pi\rangle\langle\pi|$ One copy of $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$

Strong quantum rejection sampling algorithm

The τ-rotation
Let $\boldsymbol{\tau}=\sin \theta \cdot \boldsymbol{\sigma} / \boldsymbol{\pi}$ for θ such that $\max _{k} \tau_{k} \leq 1$. Define

$$
R_{\boldsymbol{\tau}}=\sum_{k=1}^{n}\left(\begin{array}{cc}
\sqrt{1-\tau_{k}^{2}} & -\tau_{k} \\
\tau_{k} & \sqrt{1-\tau_{k}^{2}}
\end{array}\right) \otimes|k\rangle\langle k| \otimes I
$$

Strong quantum rejection sampling algorithm

The τ-rotation
Let $\boldsymbol{\tau}=\sin \theta \cdot \boldsymbol{\sigma} / \boldsymbol{\pi}$ for θ such that $\max _{k} \tau_{k} \leq 1$. Define

$$
R_{\tau}=\sum_{k=1}^{n}\left(\begin{array}{cc}
\sqrt{1-\tau_{k}^{2}} & -\tau_{k} \\
\tau_{k} & \sqrt{1-\tau_{k}^{2}}
\end{array}\right) \otimes|k\rangle\langle k| \otimes I
$$

Recall that $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$.

Strong quantum rejection sampling algorithm

The τ-rotation
Let $\boldsymbol{\tau}=\sin \theta \cdot \boldsymbol{\sigma} / \boldsymbol{\pi}$ for θ such that $\max _{k} \tau_{k} \leq 1$. Define

$$
R_{\tau}=\sum_{k=1}^{n}\left(\begin{array}{cc}
\sqrt{1-\tau_{k}^{2}} & -\tau_{k} \\
\tau_{k} & \sqrt{1-\tau_{k}^{2}}
\end{array}\right) \otimes|k\rangle\langle k| \otimes I
$$

Recall that $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$. Then

$$
R_{\tau} \cdot|0\rangle|\pi\rangle=\sum_{k=1}^{n}\left(\sqrt{1-\tau_{k}^{2}} \pi_{k}|0\rangle+\tau_{k} \pi_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

Strong quantum rejection sampling algorithm

The $\boldsymbol{\tau}$-rotation
Let $\boldsymbol{\tau}=\sin \theta \cdot \boldsymbol{\sigma} / \boldsymbol{\pi}$ for θ such that $\max _{k} \tau_{k} \leq 1$. Define

$$
R_{\tau}=\sum_{k=1}^{n}\left(\begin{array}{cc}
\sqrt{1-\tau_{k}^{2}} & -\tau_{k} \\
\tau_{k} & \sqrt{1-\tau_{k}^{2}}
\end{array}\right) \otimes|k\rangle\langle k| \otimes I
$$

Recall that $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$. Then

$$
R_{\tau} \cdot|0\rangle|\pi\rangle=\sum_{k=1}^{n}\left(\sqrt{1-\tau_{k}^{2}} \pi_{k}|0\rangle+\tau_{k} \pi_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

Note that $\tau_{k} \pi_{k}=\sin \theta \cdot \sigma_{k}$.

Strong quantum rejection sampling algorithm

The $\boldsymbol{\tau}$-rotation
Let $\boldsymbol{\tau}=\sin \theta \cdot \boldsymbol{\sigma} / \boldsymbol{\pi}$ for θ such that $\max _{k} \tau_{k} \leq 1$. Define

$$
R_{\tau}=\sum_{k=1}^{n}\left(\begin{array}{cc}
\sqrt{1-\tau_{k}^{2}} & -\tau_{k} \\
\tau_{k} & \sqrt{1-\tau_{k}^{2}}
\end{array}\right) \otimes|k\rangle\langle k| \otimes I
$$

Recall that $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$. Then

$$
\begin{aligned}
R_{\tau} \cdot|0\rangle|\pi\rangle & =\sum_{k=1}^{n}\left(\sqrt{1-\tau_{k}^{2}} \pi_{k}|0\rangle+\tau_{k} \pi_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle \\
& =\cos \theta|0\rangle|\odot\rangle\rangle+\sin \theta|1\rangle|\sigma\rangle
\end{aligned}
$$

Note that $\tau_{k} \pi_{k}=\sin \theta \cdot \sigma_{k}$.

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}\right) \cdot(Z \otimes I)
$$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ (e) $\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

$|1\rangle|6\rangle$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ POP $\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle|\overparen{\succ}\rangle,|1\rangle|\sigma\rangle\}$.
$|1\rangle|6\rangle$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply R_{τ} and get $|\Psi\rangle$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply $R_{\boldsymbol{\tau}}$ and get $|\Psi\rangle$
3. Measure the first register:

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply $R_{\boldsymbol{\tau}}$ and get $|\Psi\rangle$
3. Measure the first register:

- $|1\rangle \Rightarrow$ done

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply $R_{\boldsymbol{\tau}}$ and get $|\Psi\rangle$
3. Measure the first register:

- $|1\rangle \Rightarrow$ done
- $|0\rangle \Rightarrow$ increase l by 1

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply $R_{\boldsymbol{\tau}}$ and get $|\Psi\rangle$
3. Measure the first register:

- $|1\rangle \Rightarrow$ done
- $|0\rangle \Rightarrow$ increase l by 1

4. Pick a random $t \in\left\{1, \ldots, 2^{l}\right\}$

Strong quantum rejection sampling algorithm

Amplitude amplification
Let $|\Psi\rangle=R_{\boldsymbol{\tau}} \cdot|0\rangle|\pi\rangle=\cos \theta|0\rangle \mid$ © $\left.\rangle\right\rangle+\sin \theta|1\rangle|\sigma\rangle$. One step of amplitude amplification is given by

$$
\mathcal{A}=\operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I}=\left(R_{\boldsymbol{\tau}} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\boldsymbol{\tau}}^{\dagger}\right) \cdot(Z \otimes I)
$$

This is a rotation by 2θ in the 2 -dim subspace $\{|0\rangle \mid$ © $\rangle\rangle,|1\rangle|\sigma\rangle\}$.
Algorithm

1. Start with $|0\rangle|\pi\rangle$ and $l=0$
$|1\rangle|6\rangle$
2. Apply $R_{\boldsymbol{\tau}}$ and get $|\Psi\rangle$
3. Measure the first register:

- $|1\rangle \Rightarrow$ done
- $|0\rangle \Rightarrow$ increase l by 1

4. Pick a random $t \in\left\{1, \ldots, 2^{l}\right\}$

5. Apply \mathcal{A}^{t} and go to step 3

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Future applications

- Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
- More...

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function [Martin's talk yesterday]

Future applications

- Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
- More...

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
- Let $|b\rangle=\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
- Let $|b\rangle=\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle$
- Then $|x\rangle=A^{-1}|b\rangle=\sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
- Let $|b\rangle=\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle$
- Then $|x\rangle=A^{-1}|b\rangle=\sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle$

Algorithm

1. Apply phase estimation of $e^{i A t}$ on $|b\rangle$ and get $\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
- Let $|b\rangle=\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle$
- Then $|x\rangle=A^{-1}|b\rangle=\sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle$

Algorithm

1. Apply phase estimation of $e^{i A t}$ on $|b\rangle$ and get $\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle$
2. Convert this state to $c \cdot \sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle$

Linear systems of equations [HHLO9]

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^{d}$
- Task: Prepare $|x\rangle / \||x\rangle \|_{2}$ where $A|x\rangle=|b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A=\sum_{j=1}^{d} \lambda_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
- Let $|b\rangle=\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle$
- Then $|x\rangle=A^{-1}|b\rangle=\sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle$

Algorithm

1. Apply phase estimation of $e^{i A t}$ on $|b\rangle$ and get $\sum_{j=1}^{d} b_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle$
2. Convert this state to $c \cdot \sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle$
3. Undo phase estimation and get $c \cdot \sum_{j=1}^{d} b_{j} / \lambda_{j}\left|\psi_{j}\right\rangle=|x\rangle$

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$
2. Repeat several times:

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$
2. Repeat several times:

- Let $j:=i+$ "loc. rand. perturb."

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$
2. Repeat several times:

- Let $j:=i+$ "loc. rand. perturb."
- Set $i:=j$ with probability $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$
2. Repeat several times:

Energy

- Let $j:=i+$ "loc. rand. perturb."
- Set $i:=j$ with probability $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$
- if $E_{j} \leq E_{i}$ then $i:=j$
- if $E_{j}>E_{i}$ then $i:=j$ with prob. $e^{\beta\left(E_{i}-E_{j}\right)}$

Classical Metropolis sampling [MRRTT53]

Problem

- Given: A set of configurations S where $j \in S$ has energy E_{j}
- Task: Sample from $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$ (Gibbs distribution) where $Z(\beta)=\sum_{j} \exp \left(-\beta E_{j}\right)$

Algorithm

1. Start from a random $i \in S$
2. Repeat several times:

Energy

- Let $j:=i+$ "loc. rand. perturb."
- Set $i:=j$ with probability $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$
- if $E_{j} \leq E_{i}$ then $i:=j$
- if $E_{j}>E_{i}$ then $i:=j$ with prob. $e^{\beta\left(E_{i}-E_{j}\right)}$

3. Output the final configuration i

Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

- Given: Ability to implement Hamiltonian H
- Task: Prepare the thermal state $\rho=\exp (-\beta H) / Z(\beta)$

Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

- Given: Ability to implement Hamiltonian H
- Task: Prepare the thermal state

$$
\rho=\exp (-\beta H) / Z(\beta)
$$

Note: if $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ for some unknown E_{j} and $\left|\psi_{j}\right\rangle$, then we want to prepare $\left|\psi_{j}\right\rangle$ w.p. $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$

Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

- Given: Ability to implement Hamiltonian H
- Task: Prepare the thermal state

$$
\rho=\exp (-\beta H) / Z(\beta)=\sum_{j} e^{-\beta E_{j}}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| / Z(\beta)
$$

Note: if $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ for some unknown E_{j} and $\left|\psi_{j}\right\rangle$, then we want to prepare $\left|\psi_{j}\right\rangle$ w.p. $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$

Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

- Given: Ability to implement Hamiltonian H
- Task: Prepare the thermal state

$$
\rho=\exp (-\beta H) / Z(\beta)=\sum_{j} e^{-\beta E_{j}}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| / Z(\beta)
$$

Note: if $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ for some unknown E_{j} and $\left|\psi_{j}\right\rangle$, then we want to prepare $\left|\psi_{j}\right\rangle$ w.p. $p(j)=\exp \left(-\beta E_{j}\right) / Z(\beta)$

Main idea
Set up the same classical random walk, but use a quantum subroutine to implement each steps and also keep track of the current eigenvector $\left|\psi_{i}\right\rangle$

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm
Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm
Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE
2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k}|k\rangle\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ add a uniform superposition over \mathcal{U}

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm
Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE
2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k}|k\rangle\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ add a uniform superposition over \mathcal{U}
3. $\frac{1}{\sqrt{|\mathcal{X}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle \leftarrow$ apply U_{k} controlled on k

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm
Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE
2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k}|k\rangle\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ add a uniform superposition over \mathcal{U}
3. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle \leftarrow$ apply U_{k} controlled on k
4. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle\left|E_{j}\right\rangle \leftarrow \operatorname{attach}\left|E_{j}\right\rangle$ using QPE

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm

Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE
2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k}|k\rangle\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ add a uniform superposition over \mathcal{U}
3. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle \leftarrow$ apply U_{k} controlled on k
4. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle\left|E_{j}\right\rangle \leftarrow \operatorname{attach}\left|E_{j}\right\rangle$ using QPE
5. $\frac{1}{\sqrt{\mid \mathcal{U |}}} \sum_{j} \sqrt{p_{i j}}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle\left|E_{j}\right\rangle \leftarrow$ using QRS

Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, $H=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j}^{(k)}\left|\psi_{j}\right\rangle$.

Algorithm

Metropolis move from i to j with prob. $p_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}$:

1. $\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ prepare for random i using QPE
2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k}|k\rangle\left|\psi_{i}\right\rangle\left|E_{i}\right\rangle \leftarrow$ add a uniform superposition over \mathcal{U}
3. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle \leftarrow$ apply U_{k} controlled on k
4. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle\left|E_{j}\right\rangle \leftarrow \operatorname{attach}\left|E_{j}\right\rangle$ using QPE
5. $\frac{1}{\sqrt{|\mathcal{Y}|}} \sum_{j} \sqrt{p_{i j}}\left[\sum_{k} u_{i j}^{(k)}|k\rangle\right]\left|\psi_{j}\right\rangle\left|E_{i}\right\rangle\left|E_{j}\right\rangle \leftarrow$ using QRS
6. $\left|\psi_{j}\right\rangle\left|E_{j}\right\rangle \leftarrow$ after discarding $|k\rangle$ and $\left|E_{i}\right\rangle$

Conclusion

- Classical rejection sampling has many applications
- Quantum rejection sampling could be as useful
- Tight characterization of query complexity
- Three diverse applications:
- Boolean hidden shift problem
- Quantum Metropolis algorithm [TOVPV11]
- Quantum algorithm for linear systems of equations [HHLO9]

Funding: (1)

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$

Boolean hidden shift problem (BHSP)

Problem

- Given: Complete knowledge of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ and access to a black-box oracle for $f_{s}(x):=f(x+s)$

$$
x \Rightarrow \square \Rightarrow f_{s}(x)
$$

- Determine: The hidden shift s

Delta functions are hard

- $f(x):=\delta_{x, x_{0}}$
- Equivalent to Grover's search: $\Theta\left(\sqrt{2^{n}}\right)$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle$

$$
\sqrt{4}
$$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}(-1)^{w \cdot x} F(x)$

$$
\sqrt[H]{4}
$$

Fourier transform of Boolean functions

The ± 1-function (normalized)

- $F(x):=\frac{1}{\sqrt{2^{n}}}(-1)^{f(x)}$

Fourier transform

- $\hat{F}(w):=\langle w| H^{\otimes n}|F\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbb{Z}_{2}^{n}}(-1)^{w \cdot x} F(x)$

Function f is bent if $\forall w:|\hat{F}(w)|=\frac{1}{\sqrt{2^{n}}}$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- Apply $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04] and get

$$
D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w)||w\rangle
$$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- Apply $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04] and get

$$
D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w) \| w\rangle
$$

- If f is bent then $H^{\otimes n} D|\Phi(s)\rangle=|s\rangle$

Bent functions are easy

Preparing the "phase state"

- Phase oracle $O_{f_{s}}:|x\rangle \mapsto(-1)^{f_{s}(x)}|x\rangle$

$$
|0\rangle^{\otimes n}-H^{\otimes n}-O_{f_{s}}-H^{\otimes n}-|\Phi(s)\rangle
$$

- $|\Phi(s)\rangle:=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

Algorithm [Rötteler'10]

- Prepare $|\Phi(s)\rangle$
- Apply $D:=\operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis \& Meyer'04] and get

$$
D|\Phi(s)\rangle=\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w}|\hat{F}(w) \| w\rangle
$$

- If f is bent then $H^{\otimes n} D|\Phi(s)\rangle=|s\rangle$
- Complexity: $\Theta(1)$

All Boolean functions

All Boolean functions

In total there are $2^{2^{n}}$ Boolean functions with n arguments. -For $n=8$ this is roughly $10{ }^{77}$

All Boolean functions

In total there are $2^{2^{n}}$ Boolean functions with n arguments. -For $n=8$ this is roughly $10{ }^{77}$

All Boolean functions

In total there are $2^{2^{n}}$ Boolean functions with n arguments. -For $n=8$ this is roughly 10^{77}

All Boolean functions

In total there are $2^{2^{n}}$ Boolean functions with n arguments. -For $n=8$ this is roughly 10^{77}.

What about the rest?

Hard (delta function)

Algorithm for any Boolean function

Resampling approach

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

Algorithm for any Boolean function

Resampling approach

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

This is a quantum $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ resampling problem with

$$
\pi_{w}=\hat{F}(w) \quad \sigma_{w}=\frac{1}{\sqrt{2^{n}}} \quad|\xi(w)\rangle=(-1)^{s \cdot w}
$$

Algorithm for any Boolean function

Resampling approach

$$
\sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \hat{F}(w)|w\rangle \mapsto \sum_{w \in \mathbb{Z}_{2}^{n}}(-1)^{s \cdot w} \frac{1}{\sqrt{2^{n}}}|w\rangle
$$

This is a quantum $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ resampling problem with

$$
\pi_{w}=\hat{F}(w) \quad \sigma_{w}=\frac{1}{\sqrt{2^{n}}} \quad|\xi(w)\rangle=(-1)^{s \cdot w}
$$

Quantum query complexity
Recall that this can be solved using quantum rejection sampling in $O(1 / \gamma)$ queries where $\gamma=\min _{w} \pi_{w} / \sigma_{w}$. In our case this is:

$$
O\left(\frac{1}{\sqrt{2^{n}} \hat{F}_{\min }}\right)
$$

"Demo"

Algorithm

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$

"Demo"

Algorithm

$$
\text { 1. Prepare }|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle
$$

2. Perform a $\boldsymbol{\delta}$-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$

"Demo"

Algorithm

$$
\text { 1. Prepare }|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle
$$

2. Perform a δ-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a δ-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a δ-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a δ-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a $\boldsymbol{\delta}$-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a $\boldsymbol{\delta}$-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification

"Demo"

Algorithm

1. Prepare $|\Phi(s)\rangle=H^{\otimes n} O_{f_{s}} H^{\otimes n}|0\rangle^{\otimes n}=\sum_{w}(-1)^{s \cdot w} \hat{F}(w)|w\rangle$
2. Perform a $\boldsymbol{\delta}$-rotation where $\delta_{w}=\hat{F}_{\text {min }}$ for all $w \in \mathbb{Z}_{2}^{n}$
3. Do amplitude amplification
4. Measure the resulting state in Fourier basis

"Demo" (approximate version)

"Demo" (approximate version)

- Instead of the "flat" state

"Demo" (approximate version)

- Instead of the "flat" state aim for "approximately flat" state

"Demo" (approximate version)

- Instead of the "flat" state aim for "approximately flat" state
- Fix the desired success probability p

- Instead of the "flat" state aim for "approximately flat" state
- Fix the desired success probability p
- Optimal choice of $\boldsymbol{\delta}$ is given by the "water filling" vector $\boldsymbol{\delta}_{p}$ such that $\boldsymbol{\sigma}^{\top} \cdot \boldsymbol{\delta}_{p} /\left\|\boldsymbol{\delta}_{p}\right\|_{2} \geq \sqrt{p}$ where $\sigma_{w}=\frac{1}{\sqrt{2^{n}}}$

- Instead of the "flat" state aim for "approximately flat" state
- Fix the desired success probability p
- Optimal choice of $\boldsymbol{\delta}$ is given by the "water filling" vector $\boldsymbol{\delta}_{p}$ such that $\boldsymbol{\sigma}^{\top} \cdot \boldsymbol{\delta}_{p} /\left\|\boldsymbol{\delta}_{p}\right\|_{2} \geq \sqrt{p}$ where $\sigma_{w}=\frac{1}{\sqrt{2^{n}}}$

- Instead of the "flat" state aim for "approximately flat" state
- Fix the desired success probability p
- Optimal choice of $\boldsymbol{\delta}$ is given by the "water filling" vector $\boldsymbol{\delta}_{p}$ such that $\boldsymbol{\sigma}^{\top} \cdot \boldsymbol{\delta}_{p} /\left\|\boldsymbol{\delta}_{p}\right\|_{2} \geq \sqrt{p}$ where $\sigma_{w}=\frac{1}{\sqrt{2^{n}}}$

- Instead of the "flat" state aim for "approximately flat" state
- Fix the desired success probability p
- Optimal choice of $\boldsymbol{\delta}$ is given by the "water filling" vector $\boldsymbol{\delta}_{p}$ such that $\boldsymbol{\sigma}^{\top} \cdot \boldsymbol{\delta}_{p} /\left\|\boldsymbol{\delta}_{p}\right\|_{2} \geq \sqrt{p}$ where $\sigma_{w}=\frac{1}{\sqrt{2^{n}}}$
- Query complexity: $O\left(1 /\left\|\boldsymbol{\delta}_{p}\right\|_{2}\right)$

