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Motivation

We started with. . . [recall Martin’s talk yesterday]

An algorithm for the Boolean hidden shift problem:

I Might be useful for breaking cryptosystems (LFSRs)

I Potential insights into the dihedral hidden subgroup problem

. . . but ended up with

A useful primitive for constructing quantum algorithms:

I Quantum algorithm for linear systems of equations [HHL09]

I Quantum Metropolis algorithm [TOVPV11]

I Preparing PEPS [STV11]

I more. . .
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Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible
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Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.
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Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε
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Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:

I w.p. ‖δ‖22 the state collapses to
n∑
k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2
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Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2
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I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2



Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification
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Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε

and 0 ≤ δk ≤ πk
I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)
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Weak vs. strong quantum rejection sampling

Weak quantum resampling problem

I Given: Description of π,σ ∈ Rn+
Oracle O : |0〉 7→ |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉

Strong quantum resampling problem

I Given: Description of entry-wise ratios σ/π
Reflection ref |π〉 = I − 2|π〉〈π|
One copy of |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉



Strong quantum rejection sampling algorithm

The τ -rotation
Let τ = sin θ · σ/π for θ such that maxk τk ≤ 1. Define

Rτ =

n∑
k=1

(√
1−τ2k −τk
τk
√

1−τ2k

)
⊗ |k〉〈k| ⊗ I

Recall that |π〉 =
∑n

k=1 πk|k〉|ξ(k)〉. Then

Rτ · |0〉|π〉 =
n∑
k=1

(√
1− τ2

kπk |0〉+ τkπk |1〉
)
|k〉|ξ(k)〉

= cos θ|0〉| 〉+ sin θ|1〉|σ〉

Note that τkπk = sin θ · σk.
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Strong quantum rejection sampling algorithm

Amplitude amplification

Let |Ψ〉 = Rτ · |0〉|π〉 = cos θ|0〉| 〉+ sin θ|1〉|σ〉. One step of
amplitude amplification is given by

A = ref |Ψ〉 · ref |1〉⊗I = (Rτ · ref |0〉|π〉 ·R†τ ) · (Z ⊗ I)

This is a rotation by 2θ in the 2-dim subspace {|0〉| 〉, |1〉|σ〉}.

Algorithm

1. Start with |0〉|π〉 and l = 0

2. Apply Rτ and get |Ψ〉
3. Measure the first register:

I |1〉 ⇒ done
I |0〉 ⇒ increase l by 1

4. Pick a random t ∈ {1, . . . , 2l}
5. Apply At and go to step 3
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Linear systems of equations [HHL09]

Problem

I Given: Invertible matrix A ∈ Cd×d, one copy of |b〉 ∈ Cd

I Task: Prepare |x〉/‖|x〉‖2 where A|x〉 = |b〉

Main idea

I W.l.o.g. A is Hermitian: A =
∑d

j=1 λj |ψj〉〈ψj |
I Let |b〉 =

∑d
j=1 bj |ψj〉

I Then |x〉 = A−1|b〉 =
∑d

j=1 bj/λj |ψj〉

Algorithm

1. Apply phase estimation of eiAt on |b〉 and get
∑d

j=1 bj |ψj〉|λj〉

2. Convert this state to c ·
∑d

j=1 bj/λj |ψj〉|λj〉

3. Undo phase estimation and get c ·
∑d

j=1 bj/λj |ψj〉 = |x〉
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Classical Metropolis sampling [MRRTT53]

Problem

I Given: A set of configurations S where j ∈ S has energy Ej
I Task: Sample from p(j) = exp(−βEj)/Z(β)

(Gibbs distribution) where Z(β) =
∑

j exp(−βEj)

Algorithm

1. Start from a random i ∈ S

2. Repeat several times:

I Let j := i+ “loc. rand. perturb.”
I Set i := j with probability
pij = min{1, eβ(Ei−Ej)}

I if Ej ≤ Ei then i := j
I if Ej > Ei then i := j

with prob. eβ(Ei−Ej)

3. Output the final configuration i
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Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

I Given: Ability to implement Hamiltonian H

I Task: Prepare the thermal state
ρ = exp(−βH)/Z(β)

=
∑

j e
−βEj |ψj〉〈ψj |/Z(β)

Note: if H =
∑

j Ej |ψj〉〈ψj | for some unknown Ej and |ψj〉, then
we want to prepare |ψj〉 w.p. p(j) = exp(−βEj)/Z(β)

Main idea
Set up the same classical random
walk, but use a quantum subroutine
to implement each steps and also keep
track of the current eigenvector |ψi〉
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Quantum Metropolis sampling [TOVPV11] + QR sampling

Recall, H =
∑

j Ej |ψj〉〈ψj |. Let U be a universal set of quantum

gates and let Uk ∈ U act as Uk|ψi〉 =
∑

j u
(k)
ij |ψj〉.

Algorithm

Metropolis move from i to j with prob. pij = min{1, eβ(Ei−Ej)}:

1. |ψi〉|Ei〉 ← prepare for random i using QPE

2. 1√
|U|

∑
k |k〉|ψi〉|Ei〉 ← add a uniform superposition over U

3. 1√
|U|

∑
j

[∑
k u

(k)
ij |k〉

]
|ψj〉|Ei〉 ← apply Uk controlled on k

4. 1√
|U|

∑
j

[∑
k u

(k)
ij |k〉

]
|ψj〉|Ei〉|Ej〉 ← attach |Ej〉 using QPE

5. 1√
|U|

∑
j
√
pij

[∑
k u

(k)
ij |k〉

]
|ψj〉|Ei〉|Ej〉 ← using QRS

6. |ψj〉|Ej〉 ← after discarding |k〉 and |Ei〉
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Conclusion

I Classical rejection sampling has many applications

I Quantum rejection sampling could be as useful

I Tight characterization of query complexity
I Three diverse applications:

I Boolean hidden shift problem
I Quantum Metropolis algorithm [TOVPV11]
I Quantum algorithm for linear systems of equations [HHL09]



Funding:



Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)
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Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

= 1√
2n

∑
x∈Zn2

(−1)w·xF (x)

Function f is bent if ∀w : |F̂ (w)| = 1√
2n
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Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑

w∈Zn2
(−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I Prepare |Φ(s)〉
I Apply D := diag

(
|F̂ (w)|
F̂ (w)

)
[Curtis & Meyer’04] and get

D|Φ(s)〉 =
∑

w∈Zn2
(−1)s·w|F̂ (w)||w〉

I If f is bent then H⊗nD|Φ(s)〉 = |s〉
I Complexity: Θ(1)
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All Boolean functions

In total there are 22n Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?



All Boolean functions

In total there are 22n Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)



All Boolean functions

In total there are 22n Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)

Hard (delta function) I



All Boolean functions

In total there are 22n Boolean functions with n arguments.
For n = 8 this is roughly 1077.

What about the rest?

J Easy (bent function)

Hard (delta function) I



Algorithm for any Boolean function

Resampling approach

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)



Algorithm for any Boolean function

Resampling approach

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)



Algorithm for any Boolean function

Resampling approach

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

This is a quantum π → σ resampling problem with

πw = F̂ (w) σw =
1√
2n

|ξ(w)〉 = (−1)s·w

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in
O(1/γ) queries where γ = minw πw/σw. In our case this is:

O

(
1

√
2nF̂min

)



“Demo”

Algorithm

1. Prepare |Φ(s)〉 = H⊗nOfsH
⊗n|0〉⊗n =

∑
w(−1)s·wF̂ (w)|w〉

2. Perform a δ-rotation where δw = F̂min for all w ∈ Zn2
3. Do amplitude amplification

4. Measure the resulting state in Fourier basis
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“Demo” (approximate version)

I Instead of the “flat” state

I Fix the desired success probability p

I Optimal choice of δ is given by the “water filling” vector δp
such that σT · δp/‖δp‖2 ≥

√
p where σw = 1√

2n

I Query complexity: O(1/‖δp‖2)
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