Quantum rejection sampling

Maris Ozols University of Waterloo IQC Unstitute for Quantum Computing

Martin Rötteler NEC Laboratories America

NFC

Jérémie Roland

Université Libre de Bruxelles

arXiv:1103.2774

Motivation

We started with. . . [recall Martin's talk yesterday]

An algorithm for the Boolean hidden shift problem:

- Might be useful for breaking cryptosystems (LFSRs)
- Potential insights into the dihedral hidden subgroup problem

Motivation

We started with. . . [recall Martin's talk yesterday]

An algorithm for the Boolean hidden shift problem:

- Might be useful for breaking cryptosystems (LFSRs)
- Potential insights into the dihedral hidden subgroup problem

... but ended up with

A useful primitive for constructing quantum algorithms:

- Quantum algorithm for linear systems of equations [HHL09]
- Quantum Metropolis algorithm [TOVPV11]
- Preparing PEPS [STV11]
- ▶ more...

- ▶ Given: $p, s \in \mathbb{R}^n_+$ with $\|p\|_1 = \|s\|_1 = 1$ Ability to sample from distribution p
- **Task:** Sample from distribution s

- ▶ Given: $p, s \in \mathbb{R}^n_+$ with $\|p\|_1 = \|s\|_1 = 1$ Ability to sample from distribution p
- **Task:** Sample from distribution s
- Question: How many samples from p we need to prepare one sample from s?

- ▶ Given: $p, s \in \mathbb{R}^n_+$ with $\|p\|_1 = \|s\|_1 = 1$ Ability to sample from distribution p
- **Task:** Sample from distribution s
- Question: How many samples from p we need to prepare one sample from s?

- ▶ Given: $p, s \in \mathbb{R}^n_+$ with $\|p\|_1 = \|s\|_1 = 1$ Ability to sample from distribution p
- **Task:** Sample from distribution s
- Question: How many samples from p we need to prepare one sample from s?
- Note: Samples are pairs $(k, \xi(k))$ where $\xi(k)$ is not accessible

• Accept k with probability $\gamma s_k/p_k$

- Accept k with probability $\gamma s_k/p_k$
- Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$

- Accept k with probability $\gamma s_k/p_k \leq 1$
- Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$

- Accept k with probability $\gamma s_k/p_k~\leq 1$, so $\gamma = \min_k p_k/s_k$

• Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$

- Accept k with probability $\gamma s_k/p_k~\leq 1$, so $\gamma = \min_k p_k/s_k$
- Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$
- Query complexity: $\Theta(1/\gamma)$

- Accept k with probability $\gamma s_k/p_k~\leq 1$, so $\gamma = \min_k p_k/s_k$
- Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$
- Query complexity: $\Theta(1/\gamma)$
- Introduced by von Neumann in 1951

- Accept k with probability $\gamma s_k/p_k~\leq 1,~{\rm so}~\gamma=\min_k p_k/s_k$
- Avg. prob. to accept: $\sum_k p_k \cdot \gamma s_k / p_k = \gamma$
- Query complexity: $\Theta(1/\gamma)$
- Introduced by von Neumann in 1951
- Has numerous applications:
 - Metropolis algorithm [MRRTT53]
 - Monte-Carlo simulations
 - optimization (simulated annealing), etc.

Quantum $\pi
ightarrow \sigma$ resampling problem

► Given:
$$\pi, \sigma \in \mathbb{R}^n_+$$
 with $\|\pi\|_2 = \|\sigma\|_2 = 1$
Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$

Quantum $oldsymbol{\pi} o oldsymbol{\sigma}$ resampling problem

► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$

• Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$

Quantum $\pi ightarrow \sigma$ resampling problem

- ► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$
- Question: How many $|\pi\rangle$ s we need to produce one $|\sigma\rangle$?

Quantum $\pi
ightarrow \sigma$ resampling problem

- ► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$
- Question: How many $|\pi\rangle$ s we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Quantum $\pi
ightarrow \sigma$ resampling problem

- ► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$
- Question: How many $|\pi\rangle$ s we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)

The quantum query complexity of the exact $\pi \to \sigma$ quantum resampling problem is $\Theta(1/\gamma)$ where $\gamma = \min_k |\pi_k/\sigma_k|$

Quantum $\pi
ightarrow \sigma$ resampling problem

- ► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$
- Question: How many $|\pi\rangle$ s we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)

The quantum query complexity of the exact $\pi \to \sigma$ quantum resampling problem is $\Theta(1/\gamma)$ where $\gamma = \min_k |\pi_k/\sigma_k|$

Approximate preparation **Task:** Prepare $\sqrt{1-\varepsilon}|\sigma\rangle + \sqrt{\varepsilon}|\text{error}\rangle$

Quantum $oldsymbol{\pi} o oldsymbol{\sigma}$ resampling problem

- ► Given: $\pi, \sigma \in \mathbb{R}^n_+$ with $\|\pi\|_2 = \|\sigma\|_2 = 1$ Oracle for preparing $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$
- Question: How many $|\pi\rangle$ s we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)

The quantum query complexity of the exact $\pi \to \sigma$ quantum resampling problem is $\Theta(1/\gamma)$ where $\gamma = \min_k |\pi_k/\sigma_k|$

Approximate preparation

Task: Prepare
$$\sqrt{1-\varepsilon}|\sigma\rangle + \sqrt{\varepsilon}|error\rangle$$
 \iff Prepare $|\delta\rangle$ with $\boldsymbol{\sigma} \cdot \boldsymbol{\delta} \ge \sqrt{1-\varepsilon}$

1. Use the oracle to prepare

$$|0\rangle|\pi\rangle = |0\rangle \sum_{k=1}^{n} \pi_{k} |k\rangle |\xi(k)\rangle$$

1. Use the oracle to prepare

$$|0\rangle|\pi\rangle = |0\rangle \sum_{k=1}^{n} \pi_k |k\rangle |\xi(k)\rangle$$

2. Pick some $\delta \in \mathbb{R}^n_+$ and rotate the state in the first register: $\sum_{k=1}^n \left(\sqrt{|\pi_k|^2 - |\delta_k|^2} |0\rangle + \delta_k |1\rangle \right) |k\rangle |\xi(k)\rangle$

1. Use the oracle to prepare

$$|0\rangle|\pi\rangle = |0\rangle \sum_{k=1}^{n} \pi_{k} |k\rangle |\xi(k)\rangle$$

- 2. Pick some $\delta \in \mathbb{R}^n_+$ and rotate the state in the first register: $\sum_{k=1}^n (\sqrt{|\pi_k|^2 - |\delta_k|^2} |0\rangle + \delta_k |1\rangle) |k\rangle |\xi(k)\rangle$
- 3. Measure the first register:

1. Use the oracle to prepare

$$|0\rangle|\pi\rangle = |0\rangle \sum_{k=1}^{n} \pi_k |k\rangle |\xi(k)\rangle$$

- 2. Pick some $\delta \in \mathbb{R}^n_+$ and rotate the state in the first register: $\sum_{k=1}^n (\sqrt{|\pi_k|^2 - |\delta_k|^2} |0\rangle + \delta_k |1\rangle) |k\rangle |\xi(k)\rangle$
- 3. Measure the first register:

• w.p.
$$\|\delta\|_2^2$$
 the state collapses to
$$\sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)$$
 where $\hat{\delta}_k = \delta_k / \|\delta\|_2$

Subroutine

one copy of
$$|\pi\rangle \quad \mapsto \quad \sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle \quad \text{w.p.} \quad \|\pmb{\delta}\|_2^2$$

Subroutine

one copy of
$$|\pi\rangle \quad \mapsto \quad \sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle \quad \text{w.p.} \quad \|\pmb{\delta}\|_2^2$$

Amplification

- Naïve: repeat $1/\|\pmb{\delta}\|_2^2$ times to succeed w.p. pprox 1

Subroutine

one copy of
$$|\pi\rangle \quad \mapsto \quad \sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle \quad \text{w.p.} \quad \|\pmb{\delta}\|_2^2$$

Amplification

- ▶ Naïve: repeat $1/\|\pmb{\delta}\|_2^2$ times to succeed w.p. ≈ 1
- ► Quantum: 1/||δ||₂ repetitions of amplitude amplification suffice [BHMT00]

Subroutine

one copy of
$$|\pi\rangle \quad \mapsto \quad \sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle \quad \text{w.p.} \quad \|\pmb{\delta}\|_2^2$$

Amplification

- ▶ Naïve: repeat $1/\|\pmb{\delta}\|_2^2$ times to succeed w.p. ≈ 1
- ► Quantum: 1/||δ||₂ repetitions of amplitude amplification suffice [BHMT00]

Summary

We can prepare $\sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle$ with $O(1/\|\pmb{\delta}\|_2)$ quantum queries

Subroutine

one copy of
$$|\pi
angle \ \mapsto \ \sum_{k=1}^n \hat{\delta}_k |k
angle |\xi(k)
angle \$$
 w.p. $\|oldsymbol{\delta}\|_2^2$

Amplification

- ▶ Naïve: repeat $1/\|\pmb{\delta}\|_2^2$ times to succeed w.p. ≈ 1
- ► Quantum: 1/||δ||₂ repetitions of amplitude amplification suffice [BHMT00]

Summary

We can prepare $\sum_{k=1}^n \hat{\delta}_k |k\rangle |\xi(k)\rangle$ with $O(1/\|\pmb{\delta}\|_2)$ quantum queries

Goal: preparing $|\sigma\rangle$

- What δ should we choose?
- We are done if $m{\sigma}\cdot\hat{m{\delta}}\geq\sqrt{1-arepsilon}$ where $\hat{m{\delta}}=m{\delta}/\|m{\delta}\|_2$

Problem

• $\min_{\delta} 1/\|\delta\|_2$ s.t. $\sigma \cdot \hat{\delta} \ge \sqrt{1-\varepsilon}$

Problem

Problem

- $\min_{\boldsymbol{\delta}} 1/\|\boldsymbol{\delta}\|_2 \text{ s.t. } \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \ge \sqrt{1-\varepsilon} \text{ and } 0 \le \delta_k \le \pi_k$
- This can be stated as an SDP

Problem

This can be stated as an SDP

Optimal solution

• Let
$$\delta_k(\gamma) = \min\{\pi_k, \gamma \sigma_k\}$$

Problem

- $\left|\pi_{k}|^{2}-|\delta_{k}|^{2}|0
 ight
 angle+\delta_{k}|1
 ight
 angle|k
 angle|\xi(k)
 angle$ $\overline{k=1}$ $\min_{\boldsymbol{\delta}} 1/\|\boldsymbol{\delta}\|_2 \text{ s.t. } \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \ge \sqrt{1-\varepsilon} \text{ and } 0 \le \delta_k \le \pi_k$
- This can be stated as an SDP

Optimal solution

• Let
$$\delta_k(\gamma) = \min\{\pi_k, \gamma\sigma_k\}$$

• Choose
$$\bar{\gamma} = \max \gamma$$
 s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \geq \sqrt{1-\varepsilon}$

Optimization

Problem

 $\min_{\boldsymbol{\delta}} 1/\|\boldsymbol{\delta}\|_2 \text{ s.t. } \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \ge \sqrt{1-\varepsilon} \text{ and } 0 \le \delta_k \le \pi_k$

 $|\pi_k|^2 - |\delta_k|^2 \left| 0 \right\rangle + \delta_k \left| 1 \right\rangle \Big) |k\rangle |\xi(k)\rangle$

This can be stated as an SDP

Optimal solution

• Let
$$\delta_k(\gamma) = \min\{\pi_k, \gamma \sigma_k\}$$

• Choose
$$\bar{\gamma} = \max \gamma$$
 s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \ge \sqrt{1-\varepsilon}$

Main theorem

The quantum query complexity of the $\varepsilon\text{-approximate }\pi\to\sigma$ quantum resampling problem is $\Theta(1/\|\pmb{\delta}(\bar{\gamma})\|_2)$

Weak vs. strong quantum rejection sampling

Weak quantum resampling problem

► Given: Description of $\pi, \sigma \in \mathbb{R}^n_+$ Oracle $O: |0\rangle \mapsto |\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$ ► Task: Prepare $|\sigma\rangle = \sum_{k=1}^n \sigma_k |k\rangle |\xi(k)\rangle$

Strong quantum resampling problem

- ► Given: Description of entry-wise ratios σ/π Reflection ref $_{|\pi\rangle} = I - 2|\pi\rangle\langle\pi|$ One copy of $|\pi\rangle = \sum_{k=1}^{n} \pi_k |k\rangle |\xi(k)\rangle$
- Task: Prepare $|\sigma\rangle = \sum_{k=1}^{n} \sigma_k |k\rangle |\xi(k)\rangle$

The τ -rotation Let $\tau = \sin \theta \cdot \sigma / \pi$ for θ such that $\max_k \tau_k \leq 1$. Define

$$R_{\tau} = \sum_{k=1}^{n} \left(\frac{\sqrt{1-\tau_{k}^{2}} - \tau_{k}}{\tau_{k}} \sqrt{1-\tau_{k}^{2}} \right) \otimes |k\rangle \langle k| \otimes I$$

The τ -rotation Let $\tau = \sin \theta \cdot \sigma / \pi$ for θ such that $\max_k \tau_k \leq 1$. Define

$$R_{\tau} = \sum_{k=1}^{n} \left(\frac{\sqrt{1-\tau_{k}^{2}} - \tau_{k}}{\tau_{k}} \sqrt{1-\tau_{k}^{2}} \right) \otimes |k\rangle \langle k| \otimes I$$

Recall that $|\pi\rangle = \sum_{k=1}^{n} \pi_k |k\rangle |\xi(k)\rangle$.

The τ -rotation Let $\tau = \sin \theta \cdot \sigma / \pi$ for θ such that $\max_k \tau_k \leq 1$. Define

$$R_{\tau} = \sum_{k=1}^{n} \left(\frac{\sqrt{1-\tau_{k}^{2}} - \tau_{k}}{\tau_{k}} \sqrt{1-\tau_{k}^{2}} \right) \otimes |k\rangle \langle k| \otimes I$$

Recall that $|\pi
angle=\sum_{k=1}^n\pi_k|k
angle|\xi(k)
angle.$ Then

$$R_{\tau} \cdot |0\rangle |\pi\rangle = \sum_{k=1}^{n} \left(\sqrt{1 - \tau_k^2} \pi_k |0\rangle + \tau_k \pi_k |1\rangle \right) |k\rangle |\xi(k)\rangle$$

The τ -rotation Let $\tau = \sin \theta \cdot \sigma / \pi$ for θ such that $\max_k \tau_k \leq 1$. Define

$$R_{\tau} = \sum_{k=1}^{n} \left(\frac{\sqrt{1-\tau_{k}^{2}} - \tau_{k}}{\tau_{k}} \sqrt{1-\tau_{k}^{2}} \right) \otimes |k\rangle \langle k| \otimes I$$

Recall that $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$. Then

$$R_{\tau} \cdot |0\rangle |\pi\rangle = \sum_{k=1}^{n} \left(\sqrt{1 - \tau_k^2} \pi_k |0\rangle + \tau_k \pi_k |1\rangle \right) |k\rangle |\xi(k)\rangle$$

Note that $\tau_k \pi_k = \sin \theta \cdot \sigma_k$.

The τ -rotation Let $\tau = \sin \theta \cdot \sigma / \pi$ for θ such that $\max_k \tau_k \leq 1$. Define

$$R_{\tau} = \sum_{k=1}^{n} \left(\frac{\sqrt{1-\tau_{k}^{2}} - \tau_{k}}{\tau_{k}} \sqrt{1-\tau_{k}^{2}} \right) \otimes |k\rangle \langle k| \otimes I$$

Recall that $|\pi\rangle = \sum_{k=1}^n \pi_k |k\rangle |\xi(k)\rangle$. Then

$$R_{\tau} \cdot |0\rangle |\pi\rangle = \sum_{k=1}^{n} \left(\sqrt{1 - \tau_{k}^{2}} \pi_{k} |0\rangle + \tau_{k} \pi_{k} |1\rangle \right) |k\rangle |\xi(k)\rangle$$
$$= \cos \theta |0\rangle |\mathfrak{O}\rangle + \sin \theta |1\rangle |\sigma\rangle$$

Note that $\tau_k \pi_k = \sin \theta \cdot \sigma_k$.

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle| \circledast\rangle, |1\rangle|\sigma\rangle\}$.

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|\textcircled{0}\rangle,|1\rangle|\sigma\rangle\}.$ Algorithm

1. Start with $|0
angle|\pi
angle$ and l=0

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0
 angle|\pi
 angle$ and l=0
- 2. Apply $R_{m{ au}}$ and get $|\Psi
 angle$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0
 angle|\pi
 angle$ and l=0
- 2. Apply $R_{m{ au}}$ and get $|\Psi
 angle$
- 3. Measure the first register:

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0
 angle|\pi
 angle$ and l=0
- 2. Apply $R_{m{ au}}$ and get $|\Psi
 angle$
- 3. Measure the first register:

•
$$|1\rangle \Rightarrow done$$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0
 angle|\pi
 angle$ and l=0
- 2. Apply $R_{oldsymbol{ au}}$ and get $|\Psi
 angle$
- 3. Measure the first register:

•
$$|1\rangle \Rightarrow \mathsf{done}$$

 $\blacktriangleright \hspace{0.1 cm} |0\rangle \Rightarrow \text{increase} \hspace{0.1 cm} l \hspace{0.1 cm} \text{by} \hspace{0.1 cm} 1$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0
 angle|\pi
 angle$ and l=0
- 2. Apply $R_{m{ au}}$ and get $|\Psi
 angle$
- 3. Measure the first register:
 - $|1\rangle \Rightarrow$ done • $|0\rangle \Rightarrow$ increase l by 1

4. Pick a random $t \in \{1, \ldots, 2^l\}$

Amplitude amplification

Let $|\Psi\rangle = R_{\tau} \cdot |0\rangle |\pi\rangle = \cos \theta |0\rangle |@\rangle + \sin \theta |1\rangle |\sigma\rangle$. One step of amplitude amplification is given by

$$\mathcal{A} = \operatorname{ref}_{|\Psi\rangle} \cdot \operatorname{ref}_{|1\rangle \otimes I} = (R_{\tau} \cdot \operatorname{ref}_{|0\rangle|\pi\rangle} \cdot R_{\tau}^{\dagger}) \cdot (Z \otimes I)$$

This is a rotation by 2θ in the 2-dim subspace $\{|0\rangle|@\rangle, |1\rangle|\sigma\rangle\}$. Algorithm

- 1. Start with $|0\rangle|\pi\rangle$ and l=0
- 2. Apply $R_{oldsymbol{ au}}$ and get $|\Psi
 angle$
- 3. Measure the first register:
 - $|1\rangle \Rightarrow done$
 - $|0\rangle \Rightarrow$ increase l by 1

4. Pick a random $t \in \{1, \ldots, 2^l\}$

5. Apply \mathcal{A}^t and go to step 3

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- ► Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- ► Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- ► Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Future applications

- ▶ Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
- ► More...

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- ► Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function [Martin's talk yesterday]

Future applications

- ▶ Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
- ► More...

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

• W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$
- Let $|b\rangle = \sum_{j=1}^d b_j |\psi_j\rangle$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

- W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$
- Let $|b
 angle = \sum_{j=1}^d b_j |\psi_j
 angle$
- Then $|x\rangle = A^{-1}|b\rangle = \sum_{j=1}^d b_j/\lambda_j |\psi_j\rangle$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

• W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$

• Let
$$|b\rangle = \sum_{j=1}^{d} b_j |\psi_j\rangle$$

• Then
$$|x\rangle = A^{-1}|b\rangle = \sum_{j=1}^{d} b_j / \lambda_j |\psi_j\rangle$$

Algorithm

1. Apply phase estimation of e^{iAt} on $|b\rangle$ and get $\sum_{j=1}^d b_j |\psi_j\rangle |\lambda_j\rangle$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

• W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$

• Let
$$|b\rangle = \sum_{j=1}^{d} b_j |\psi_j\rangle$$

• Then
$$|x\rangle = A^{-1}|b\rangle = \sum_{j=1}^{d} b_j / \lambda_j |\psi_j\rangle$$

Algorithm

- 1. Apply phase estimation of e^{iAt} on $|b\rangle$ and get $\sum_{j=1}^{d} b_j |\psi_j\rangle |\lambda_j\rangle$
- 2. Convert this state to $c\cdot \sum_{j=1}^d b_j/\lambda_j |\psi_j\rangle |\lambda_j\rangle$

Problem

- Given: Invertible matrix $A \in \mathbb{C}^{d \times d}$, one copy of $|b\rangle \in \mathbb{C}^d$
- Task: Prepare $|x\rangle/||x\rangle||_2$ where $A|x\rangle = |b\rangle$

Main idea

• W.I.o.g. A is Hermitian: $A = \sum_{j=1}^{d} \lambda_j |\psi_j\rangle \langle \psi_j |$

• Let
$$|b\rangle = \sum_{j=1}^{d} b_j |\psi_j\rangle$$

• Then
$$|x\rangle = A^{-1}|b\rangle = \sum_{j=1}^d b_j/\lambda_j |\psi_j\rangle$$

Algorithm

- 1. Apply phase estimation of e^{iAt} on |b
 angle and get $\sum_{j=1}^d b_j |\psi_j
 angle |\lambda_j
 angle$
- 2. Convert this state to $c\cdot \sum_{j=1}^d b_j/\lambda_j |\psi_j\rangle |\lambda_j\rangle$
- 3. Undo phase estimation and get $c\cdot \sum_{j=1}^d b_j/\lambda_j |\psi_j\rangle = |x\rangle$

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = ∑_j exp(-βE_j)

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- ► Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = ∑_j exp(-βE_j)

Algorithm

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- ► Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = ∑_j exp(-βE_j)

Algorithm

- 1. Start from a random $i \in S$
- 2. Repeat several times:

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = Σ_j exp(-βE_j)

Algorithm

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = Σ_j exp(-βE_j)

Algorithm

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- ► Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = ∑_j exp(-βE_j)

Algorithm

Problem

- Given: A set of configurations S where $j \in S$ has energy E_j
- ► Task: Sample from p(j) = exp(-βE_j)/Z(β) (Gibbs distribution) where Z(β) = ∑_j exp(-βE_j)

Algorithm

Quantum Metropolis sampling [TOVPV11] + QR sampling

Problem

- Given: Ability to implement Hamiltonian H
- **Task:** Prepare the thermal state $\rho = \exp(-\beta H)/Z(\beta)$
Problem

- Given: Ability to implement Hamiltonian H
- ► **Task:** Prepare the thermal state $\rho = \exp(-\beta H)/Z(\beta)$

Note: if $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$ for some unknown E_j and $|\psi_j\rangle$, then we want to prepare $|\psi_j\rangle$ w.p. $p(j) = \exp(-\beta E_j)/Z(\beta)$

Problem

• Given: Ability to implement Hamiltonian H

► **Task:** Prepare the thermal state $\rho = \exp(-\beta H)/Z(\beta) = \sum_j e^{-\beta E_j} |\psi_j\rangle \langle \psi_j|/Z(\beta)$

Note: if $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$ for some unknown E_j and $|\psi_j\rangle$, then we want to prepare $|\psi_j\rangle$ w.p. $p(j) = \exp(-\beta E_j)/Z(\beta)$

Problem

• Given: Ability to implement Hamiltonian H

► **Task:** Prepare the thermal state $\rho = \exp(-\beta H)/Z(\beta) = \sum_j e^{-\beta E_j} |\psi_j\rangle \langle \psi_j|/Z(\beta)$

Note: if $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$ for some unknown E_j and $|\psi_j\rangle$, then we want to prepare $|\psi_j\rangle$ w.p. $p(j) = \exp(-\beta E_j)/Z(\beta)$

Main idea

Set up the same *classical* random walk, but use a *quantum* subroutine to implement each steps and also keep track of the current eigenvector $|\psi_i\rangle$

Recall, $H = \sum_{j} E_{j} |\psi_{j}\rangle \langle \psi_{j}|$. Let \mathcal{U} be a universal set of quantum gates and let $U_{k} \in \mathcal{U}$ act as $U_{k} |\psi_{i}\rangle = \sum_{j} u_{ij}^{(k)} |\psi_{j}\rangle$.

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from *i* to *j* with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

1. $|\psi_i\rangle|E_i\rangle \leftarrow$ prepare for random i using QPE

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j |$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from *i* to *j* with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

1. $|\psi_i\rangle|E_i\rangle$ \leftarrow prepare for random i using QPE

2.
$$\frac{1}{\sqrt{|\mathcal{U}|}}\sum_{k}|k\rangle|\psi_i\rangle|E_i\rangle$$
 \leftarrow add a uniform superposition over \mathcal{U}

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j |$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from *i* to *j* with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

- 1. $|\psi_i\rangle|E_i\rangle \leftarrow$ prepare for random i using QPE
- 2. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{k} |k\rangle |\psi_i\rangle |E_i\rangle \leftarrow \text{add a uniform superposition over } \mathcal{U}$ 3. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j} \left[\sum_{k} u_{ij}^{(k)} |k\rangle \right] |\psi_j\rangle |E_i\rangle \leftarrow \text{apply } U_k \text{ controlled on } k$

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from i to j with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

 $\begin{array}{ll} 1. & |\psi_i\rangle|E_i\rangle \leftarrow \text{prepare for random } i \text{ using QPE} \\ 2. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_k |k\rangle|\psi_i\rangle|E_i\rangle \leftarrow \text{add a uniform superposition over } \mathcal{U} \\ 3. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_j \left[\sum_k u_{ij}^{(k)}|k\rangle\right]|\psi_j\rangle|E_i\rangle \leftarrow \text{apply } U_k \text{ controlled on } k \\ 4. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_j \left[\sum_k u_{ij}^{(k)}|k\rangle\right]|\psi_j\rangle|E_i\rangle|E_j\rangle \leftarrow \text{attach } |E_j\rangle \text{ using QPE} \end{array}$

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from i to j with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

 $\begin{array}{ll} 1. & |\psi_i\rangle|E_i\rangle \leftarrow \text{prepare for random } i \text{ using QPE} \\ 2. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_k |k\rangle|\psi_i\rangle|E_i\rangle \leftarrow \text{add a uniform superposition over } \mathcal{U} \\ 3. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_j \left[\sum_k u_{ij}^{(k)}|k\rangle\right]|\psi_j\rangle|E_i\rangle \leftarrow \text{apply } U_k \text{ controlled on } k \\ 4. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_j \left[\sum_k u_{ij}^{(k)}|k\rangle\right]|\psi_j\rangle|E_i\rangle|E_j\rangle \leftarrow \text{attach } |E_j\rangle \text{ using QPE} \\ 5. & \frac{1}{\sqrt{|\mathcal{U}|}}\sum_j \sqrt{p_{ij}}\left[\sum_k u_{ij}^{(k)}|k\rangle\right]|\psi_j\rangle|E_i\rangle|E_j\rangle \leftarrow \text{using QRS} \end{array}$

Recall, $H = \sum_j E_j |\psi_j\rangle \langle \psi_j|$. Let \mathcal{U} be a universal set of quantum gates and let $U_k \in \mathcal{U}$ act as $U_k |\psi_i\rangle = \sum_j u_{ij}^{(k)} |\psi_j\rangle$.

Algorithm

Metropolis move from i to j with prob. $p_{ij} = \min\{1, e^{\beta(E_i - E_j)}\}$:

1. $|\psi_i\rangle|E_i\rangle \leftarrow$ prepare for random *i* using QPE 2. $\frac{1}{\sqrt{|\mathcal{U}|}}\sum_{k}|k\rangle|\psi_i\rangle|E_i\rangle \leftarrow \text{add a uniform superposition over }\mathcal{U}$ 3. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j} \left[\sum_{k} u_{ij}^{(k)} |k\rangle \right] |\psi_{j}\rangle |E_{i}\rangle \leftarrow \text{apply } U_{k} \text{ controlled on } k$ 4. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j} \left[\sum_{k} u_{ij}^{(k)} |k\rangle \right] |\psi_j\rangle |E_i\rangle |E_j\rangle \leftarrow \text{attach } |E_j\rangle \text{ using QPE}$ 5. $\frac{1}{\sqrt{|\mathcal{U}|}} \sum_{j} \sqrt{p_{ij}} \left[\sum_{k} u_{ij}^{(k)} |k\rangle \right] |\psi_j\rangle |E_i\rangle |E_j\rangle \leftarrow \text{using QRS}$ 6. $|\psi_i\rangle|E_i\rangle \leftarrow$ after discarding $|k\rangle$ and $|E_i\rangle$

Conclusion

- Classical rejection sampling has many applications
- Quantum rejection sampling could be as useful
- Tight characterization of query complexity
- Three diverse applications:
 - Boolean hidden shift problem
 - Quantum Metropolis algorithm [TOVPV11]
 - Quantum algorithm for linear systems of equations [HHL09]

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

•
$$f(x) := \delta_{x,x_0}$$

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

•
$$f(x) := \delta_{x,x_0}$$

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

$$\blacktriangleright f(x) := \delta_{x,x_0}$$

• Equivalent to Grover's search: $\Theta(\sqrt{2^n})$

The ± 1 -function (normalized)

►
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

$$\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle$$

The ± 1 -function (normalized)

►
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

$$\hat{F}(w) := \langle w | H^{\otimes n} | F \rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{Z}_2^n} (-1)^{w \cdot x} F(x)$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

Preparing the "phase state"

• Phase oracle $O_{f_s}: |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\blacktriangleright |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s}: |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

• Prepare
$$|\Phi(s)\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

• Prepare
$$|\Phi(s)\rangle$$

• Apply $D := \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis & Meyer'04] and get $D|\Phi(s)\rangle = \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\hat{F}(w)| |w\rangle$
• If f is bent then $H^{\otimes n}D|\Phi(s)\rangle = |s\rangle$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

- Prepare $|\Phi(s)\rangle$ • Apply $D := \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right)$ [Curtis & Meyer'04] and get $D|\Phi(s)\rangle = \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\hat{F}(w)| |w\rangle$
- \blacktriangleright If f is bent then $H^{\otimes n}D|\Phi(s)\rangle=|s\rangle$
- Complexity: $\Theta(1)$

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

Easy (bent function)

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

Easy (bent function)

Hard (delta function) ►

In total there are 2^{2^n} Boolean functions with n arguments. For n = 8 this is roughly 10^{77} .

Easy (bent function

What about the rest?

Hard (delta function) 🕨

Algorithm for any Boolean function

Resampling approach

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

Algorithm for any Boolean function

Resampling approach

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

This is a quantum $\pi o \sigma$ resampling problem with

$$\pi_w = \hat{F}(w)$$
 $\sigma_w = \frac{1}{\sqrt{2^n}}$ $|\xi(w)\rangle = (-1)^{s \cdot w}$

Algorithm for any Boolean function

Resampling approach

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

This is a quantum $\pi o \sigma$ resampling problem with

$$\pi_w = \hat{F}(w)$$
 $\sigma_w = \frac{1}{\sqrt{2^n}}$ $|\xi(w)\rangle = (-1)^{s \cdot w}$

Quantum query complexity

Recall that this can be solved using quantum rejection sampling in $O(1/\gamma)$ queries where $\gamma = \min_w \pi_w/\sigma_w$. In our case this is:

$$O\left(\frac{1}{\sqrt{2^n}\hat{F}_{\min}}\right)$$

Algorithm

"Demo"

Algorithm

1. Prepare
$$|\Phi(s)
angle = H^{\otimes n}O_{f_s}H^{\otimes n}|0
angle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w
angle$$

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s \cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s \cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a $\boldsymbol{\delta}$ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification

- 1. Prepare $|\Phi(s)\rangle = H^{\otimes n}O_{f_s}H^{\otimes n}|0\rangle^{\otimes n} = \sum_w (-1)^{s\cdot w}\hat{F}(w)|w\rangle$
- 2. Perform a δ -rotation where $\delta_w = \hat{F}_{\min}$ for all $w \in \mathbb{Z}_2^n$
- 3. Do amplitude amplification
- 4. Measure the resulting state in Fourier basis

Instead of the "flat" state

Instead of the "flat" state aim for "approximately flat" state

- Instead of the "flat" state aim for "approximately flat" state
- \blacktriangleright Fix the desired success probability p

- Instead of the "flat" state aim for "approximately flat" state
- \blacktriangleright Fix the desired success probability p
- Optimal choice of δ is given by the "water filling" vector δ_p such that $\sigma^{\mathsf{T}} \cdot \delta_p / \|\delta_p\|_2 \ge \sqrt{p}$ where $\sigma_w = \frac{1}{\sqrt{2^n}}$

- Instead of the "flat" state aim for "approximately flat" state
- \blacktriangleright Fix the desired success probability p
- ▶ Optimal choice of δ is given by the "water filling" vector δ_p such that $\sigma^{\mathsf{T}} \cdot \delta_p / \|\delta_p\|_2 \ge \sqrt{p}$ where $\sigma_w = \frac{1}{\sqrt{2^n}}$

- Instead of the "flat" state aim for "approximately flat" state
- \blacktriangleright Fix the desired success probability p
- Optimal choice of δ is given by the "water filling" vector δ_p such that $\sigma^{\mathsf{T}} \cdot \delta_p / \|\delta_p\|_2 \ge \sqrt{p}$ where $\sigma_w = \frac{1}{\sqrt{2^n}}$

- Instead of the "flat" state aim for "approximately flat" state
- \blacktriangleright Fix the desired success probability p
- Optimal choice of δ is given by the "water filling" vector δ_p such that $\sigma^{\mathsf{T}} \cdot \delta_p / \|\delta_p\|_2 \ge \sqrt{p}$ where $\sigma_w = \frac{1}{\sqrt{2^n}}$
- Query complexity: $O(1/\|\boldsymbol{\delta}_p\|_2)$

