Quantum rejection sampling

Maris Ozols
University of Waterloo

Martin Rötteler
NEC Laboratories America
NEC

Jérémie Roland
Université Libre de Bruxelles
ULB

> arXiv:1103.2774

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?

Resampling

Classical $\boldsymbol{p} \rightarrow \boldsymbol{s}$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?

Resampling

Classical $p \rightarrow s$ resampling problem

- Given: $\boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{p}\|_{1}=\|\boldsymbol{s}\|_{1}=1$

Ability to sample from distribution \boldsymbol{p}

- Task: Sample from distribution s
- Question: How many samples from \boldsymbol{p} we need to prepare one sample from s ?
- Note: Samples are pairs $(k, \xi(k))$ where $\xi(k)$ is not accessible

Classical rejection sampling

Algorithm

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k}$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$
- Introduced by von Neumann in 1951

Classical rejection sampling

Algorithm

- Accept k with probability $\gamma s_{k} / p_{k} \leq 1$, so $\gamma=\min _{k} p_{k} / s_{k}$
- Avg. prob. to accept: $\sum_{k} p_{k} \cdot \gamma s_{k} / p_{k}=\gamma$
- Query complexity: $\Theta(1 / \gamma)$
- Introduced by von Neumann in 1951
- Has numerous applications:
- Metropolis algorithm [MRRTT53]
- Monte-Carlo simulations
- optimization (simulated annealing), etc.

Quantum computing in 60 seconds

Quantum computing in 60 seconds

Quantum states

$$
\begin{gathered}
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{n}
\end{array}\right) \in \mathbb{C}^{n} \\
\|\psi\|_{2}=\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1 \\
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
\end{gathered}
$$

Quantum computing in 60 seconds

Quantum states

$$
\begin{gathered}
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{n}
\end{array}\right) \in \mathbb{C}^{n} \\
\|\psi\|_{2}=\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1 \\
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
\end{gathered}
$$

Composite systems

$$
|\alpha\rangle|\beta\rangle=\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}=\binom{\alpha_{0}\binom{\beta_{0}}{\beta_{1}}}{\alpha_{1}\binom{\beta_{0}}{\beta_{1}}}=\left(\begin{array}{l}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right)
$$

Quantum computing in 60 seconds

Quantum states

$$
\begin{gathered}
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{n}
\end{array}\right) \in \mathbb{C}^{n} \\
\|\psi\|_{2}=\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1 \\
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
\end{gathered}
$$

Quantum transformations

 Unitary transformations ("rotations")Composite systems

$$
|\alpha\rangle|\beta\rangle=\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}=\binom{\alpha_{0}\binom{\beta_{0}}{\beta_{1}}}{\alpha_{1}\binom{\beta_{0}}{\beta_{1}}}=\left(\begin{array}{l}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right)
$$

Quantum computing in 60 seconds

Quantum states

$$
\begin{gathered}
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{n}
\end{array}\right) \in \mathbb{C}^{n} \\
\|\psi\|_{2}=\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1 \\
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
\end{gathered}
$$

(Partial) measurement

$$
\binom{\boldsymbol{\psi}_{0}}{\boldsymbol{\psi}_{1}} \Rightarrow\left\{\begin{array}{l}
\boldsymbol{\psi}_{0} /\left\|\boldsymbol{\psi}_{0}\right\|_{2} \text { w.p. }\left\|\boldsymbol{\psi}_{0}\right\|_{2}^{2} \\
\boldsymbol{\psi}_{1} /\left\|\boldsymbol{\psi}_{1}\right\|_{2} \text { w.p. }\left\|\boldsymbol{\psi}_{1}\right\|_{2}^{2}
\end{array}\right.
$$

Quantum transformations
Unitary transformations ("rotations")

Composite systems

$$
|\alpha\rangle|\beta\rangle=\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}=\binom{\alpha_{0}\binom{\beta_{0}}{\beta_{1}}}{\alpha_{1}\binom{\beta_{0}}{\beta_{1}}}=\left(\begin{array}{l}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right)
$$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Approximate preparation
Task: Prepare $\sqrt{1-\varepsilon}|\sigma\rangle+\sqrt{\varepsilon} \mid$ error \rangle

Quantum resampling

Quantum $\pi \rightarrow \sigma$ resampling problem

- Given: $\boldsymbol{\pi}, \boldsymbol{\sigma} \in \mathbb{R}_{+}^{n}$ with $\|\boldsymbol{\pi}\|_{2}=\|\boldsymbol{\sigma}\|_{2}=1$

Oracle for preparing $|\pi\rangle=\sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle$

- Task: Prepare $|\sigma\rangle=\sum_{k=1}^{n} \sigma_{k}|k\rangle|\xi(k)\rangle$
- Question: How many $|\pi\rangle \mathrm{s}$ we need to produce one $|\sigma\rangle$?
- Note: States $|\xi(k)\rangle$ are not known

Main theorem (exact case)
The quantum query complexity of the exact $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta(1 / \gamma)$ where $\gamma=\min _{k}\left|\pi_{k} / \sigma_{k}\right|$

Approximate preparation
Task: Prepare $\sqrt{1-\varepsilon}|\sigma\rangle+\sqrt{\varepsilon} \mid$ error \rangle
\Longleftrightarrow Prepare $|\delta\rangle$ with $\sigma \cdot \delta \geq \sqrt{1-\varepsilon}$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

3. Measure the first register:

Quantum rejection sampling algorithm

1. Use the oracle to prepare

$$
|0\rangle|\pi\rangle=|0\rangle \sum_{k=1}^{n} \pi_{k}|k\rangle|\xi(k)\rangle
$$

2. Pick some $\boldsymbol{\delta} \in \mathbb{R}_{+}^{n}$ and rotate the state in the first register:

$$
\sum_{k=1}^{n}\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\delta_{k}\right|^{2}}|0\rangle+\delta_{k}|1\rangle\right)|k\rangle|\xi(k)\rangle
$$

3. Measure the first register:

- w.p. $\|\boldsymbol{\delta}\|_{2}^{2}$ the state collapses to

$$
\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle
$$

where $\hat{\delta}_{k}=\delta_{k} /\|\boldsymbol{\delta}\|_{2}$

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Summary
We can prepare $\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle$ with $O\left(1 /\|\boldsymbol{\delta}\|_{2}\right)$ quantum queries

Quantum rejection sampling algorithm

Subroutine

$$
\text { one copy of }|\pi\rangle \quad \mapsto \quad \sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle \quad \text { w.p. } \quad\|\boldsymbol{\delta}\|_{2}^{2}
$$

Amplification

- Naïve: repeat $1 /\|\boldsymbol{\delta}\|_{2}^{2}$ times to succeed w.p. ≈ 1
- Quantum: $1 /\|\boldsymbol{\delta}\|_{2}$ repetitions of amplitude amplification suffice [BHMT00]

Summary
We can prepare $\sum_{k=1}^{n} \hat{\delta}_{k}|k\rangle|\xi(k)\rangle$ with $O\left(1 /\|\boldsymbol{\delta}\|_{2}\right)$ quantum queries

Goal: preparing $|\sigma\rangle$

- What δ should we choose?
- We are done if $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ where $\hat{\boldsymbol{\delta}}=\boldsymbol{\delta} /\|\boldsymbol{\delta}\|_{2}$

Optimization

Problem
$-\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$

Optimization

Optimization

Problem

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k} \circ_{\circ}^{\circ}$
- This can be stated as an SDP

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$
- Choose $\bar{\gamma}=\max \gamma$ st. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \geq \sqrt{1-\varepsilon}$

Optimization

- $\min _{\boldsymbol{\delta}} 1 /\|\boldsymbol{\delta}\|_{2}$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}} \geq \sqrt{1-\varepsilon}$ and $0 \leq \delta_{k} \leq \pi_{k}$
- This can be stated as an SDP

Optimal solution

- Let $\delta_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$
- Choose $\bar{\gamma}=\max \gamma$ s.t. $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\delta}}(\gamma) \geq \sqrt{1-\varepsilon}$

Main theorem
The quantum query complexity of the ε-approximate $\boldsymbol{\pi} \rightarrow \boldsymbol{\sigma}$ quantum resampling problem is $\Theta\left(1 /\|\boldsymbol{\delta}(\bar{\gamma})\|_{2}\right)$

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Applications

Implicit use

- Synthesis of quantum states [Grover, 2000]
- Linear systems of equations [Harrow, Hassidim and Lloyd 2009]
- Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- Speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- New quantum algorithm for the hidden shift problem of any Boolean function

Future applications

- Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
- More...

Thank you!

