Characterization of universal 2-qubit Hamiltonians

Laura Mancinska, Andrew Childs, Debbie Leung and Maris Ozols

University of Waterloo, IQC

Outline

- 1. Introduction
- 2. Non-universal gate case studies
- 3. Transformations that preserve universality
- 4. Proving universality
- 5. Summary and open questions

Introduction

Suppose we can implement 2-qubit Hamiltonian H.

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement THT, where

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement THT, where

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example

$$H = \frac{\phi}{2}\sigma_z \otimes I + \frac{\theta}{2}I \otimes \sigma_x$$

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement THT, where

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example

$$H = \frac{\phi}{2}\sigma_z \otimes I + \frac{\theta}{2}I \otimes \sigma_x$$
$$THT = \frac{\phi}{2}I \otimes \sigma_z + \frac{\theta}{2}\sigma_x \otimes I$$

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U\in \mathcal{U}(4)$ using H and THT.

Definition

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Simulate U means - for all $\varepsilon > 0$ there exist $t_1, \ldots, t_n \ge 0$ s.t.

$$\left\|U - e^{-iHt_1}e^{-iTHTt_2}e^{-iHt_3}\dots e^{-iTHTt_n}\right\| < \varepsilon$$

Definition

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Simulate U means - for all $\varepsilon > 0$ there exist $t_1, \ldots, t_n \ge 0$ s.t.

$$\left\|U - e^{-iHt_1}e^{-iTHTt_2}e^{-iHt_3}\dots e^{-iTHTt_n}\right\| < \varepsilon$$

Note that

ancilla is not given

Definition

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Simulate U means - for all $\varepsilon > 0$ there exist $t_1, \ldots, t_n \ge 0$ s.t.

$$\left\|U - e^{-iHt_1}e^{-iTHTt_2}e^{-iHt_3}\dots e^{-iTHTt_n}\right\| < \varepsilon$$

Note that

- ancilla is not given
- one qubit gates are not given

Definition

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Simulate U means - for all $\varepsilon > 0$ there exist $t_1, \ldots, t_n \ge 0$ s.t.

$$\left\|U - e^{-iHt_1}e^{-iTHTt_2}e^{-iHt_3}\dots e^{-iTHTt_n}\right\| < \varepsilon$$

Note that

- ancilla is not given
- one qubit gates are not given
- simulation of entire $\mathcal{U}(4)$ is required

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Question Which 2-qubit Hamiltonians are universal?

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Question Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

- Finite list of conditions
- Effectively checkable

2-qubit Hamiltonian H is universal if we can *simulate* any unitary $U \in \mathcal{U}(4)$ using H and THT.

Question Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

- Finite list of conditions
- Effectively checkable

Previous results Almost any 2-qubit Hamiltonian is universal. [Lloyd '95; Deutsch, Barenco, Eckert '95]

Non-universal gate case studies

Definition Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

 $U = e^{-iH}$

Definition Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$U = e^{-iH}$$

Exponentiating Hamiltonian $H = \sum_{i} \lambda_{i} |v_{i}\rangle \langle v_{i}|$ $e^{-iH} = \sum_{i} e^{-i\lambda_{i}} |v_{i}\rangle \langle v_{i}|$

Definition Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$U = e^{-iH}$$

Exponentiating Hamiltonian $H = \sum_{i} \lambda_{i} |v_{i}\rangle \langle v_{i}|$

$$e^{-iH} = \sum_{i} e^{-i\lambda_{i}} |v_{i}\rangle \langle v_{i}|$$
$$e^{-iH} = I + \frac{-iH}{1!} + \frac{(-iH)^{2}}{2!} + \frac{(-iH)^{3}}{3!} + \dots$$

Definition Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$U = e^{-iH}$$

Exponentiating Hamiltonian $H = \sum_{i} \lambda_{i} \left| v_{i} \right\rangle \left\langle v_{i} \right|$

$$e^{-iH} = \sum_{i} e^{-i\lambda_{i}} |v_{i}\rangle \langle v_{i}|$$
$$e^{-iH} = I + \frac{-iH}{1!} + \frac{(-iH)^{2}}{2!} + \frac{(-iH)^{3}}{3!} + \dots$$

Definition

We say unitary U is universal if the corresponding Hamiltonian is universal.

If we can implement unitary $U = e^{-iH}$, then we can also implement

• U^t for all real $t \ge 0$, as $U^t = \left(e^{-iH}\right)^t = e^{-iHt}$

If we can implement unitary $U = e^{-iH}$, then we can also implement

- U^t for all real $t \ge 0$, as $U^t = (e^{-iH})^t = e^{-iHt}$
- ▶ $TU^{t}T$ for all real $t \ge 0$, as $TU^{t}T = Te^{-iHt}T = e^{-iTHTt}$

If we can implement unitary $U = e^{-iH}$, then we can also implement

- U^t for all real $t \ge 0$, as $U^t = \left(e^{-iH}\right)^t = e^{-iHt}$
- ▶ $TU^{t}T$ for all real $t \ge 0$, as $TU^{t}T = Te^{-iHt}T = e^{-iTHTt}$

Can you think of a clearly non-universal unitary?

If we can implement unitary $U = e^{-iH}$, then we can also implement

- U^t for all real $t \ge 0$, as $U^t = (e^{-iH})^t = e^{-iHt}$
- ▶ $TU^{t}T$ for all real $t \ge 0$, as $TU^{t}T = Te^{-iHt}T = e^{-iTHTt}$

Can you think of a clearly non-universal unitary?

• Consider $U = A \otimes B$

$$U^t = A^t \otimes B^t$$

If we can implement unitary $U = e^{-iH}$, then we can also implement

- U^t for all real $t \ge 0$, as $U^t = (e^{-iH})^t = e^{-iHt}$
- ▶ $TU^{t}T$ for all real $t \ge 0$, as $TU^{t}T = Te^{-iHt}T = e^{-iTHTt}$

Can you think of a clearly non-universal unitary?

• Consider $U = A \otimes B$

$$U^{t} = A^{t} \otimes B^{t}$$
$$TU^{t}T = T(A^{t} \otimes B^{t})T = B^{t} \otimes A^{t}$$

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

$$\blacktriangleright \text{ Consider } U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & U(3) \\ 0 & U(3) \end{pmatrix}$$

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

► Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

 $TU^t T & |00\rangle = |00\rangle$

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

 $TU^t T & |00\rangle = |00\rangle$

Generalization: U and T have a common eigenvector

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

 $TU^t T & |00\rangle = |00\rangle$

Generalization: U and T have a common eigenvector

► Consider $U = e^{-iH}$ s.t. det(U) = 1 or equivalently Tr(H) = 0

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

 $TU^t T & |00\rangle = |00\rangle$

Generalization: U and T have a common eigenvector

• Consider $U = e^{-iH}$ s.t. det(U) = 1 or equivalently Tr(H) = 0

$$\det (U^t) = \det (e^{-iHt}) = e^{-i\operatorname{Tr}(H)t} = e^0 = 1$$

We can implement: $U^t, TU^tT \ \forall t \ge 0$, where $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Consider
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & U(3) \\ 0 & U^t & |00\rangle = |00\rangle$$

 $TU^t T & |00\rangle = |00\rangle$

Generalization: U and T have a common eigenvector

► Consider $U = e^{-iH}$ s.t. det(U) = 1 or equivalently Tr(H) = 0

$$\det (U^t) = \det (e^{-iHt}) = e^{-i\operatorname{Tr}(H)t} = e^0 = 1$$
$$\det(TU^tT) = \det^2(T)\det(U^t) = (-1)^2 \cdot 1 = 1$$

Non-universal gates - resume

\boldsymbol{U} is non-universal if

- 1. $U = A \otimes B$
- 2. U shares an eigenvector with T
- **3**. $U \in \mathcal{SU}(4)$

Transformations that preserve universality

T-similarity

Definition

Matrices A and B are said to be similar if there exists invertible matrix P s.t. $A = PBP^{-1}$.
Definition

Matrices A and B are said to be similar if there exists invertible matrix P s.t. $A = PBP^{-1}$.

Definition

Matrices A and B are said to be *T*-similar if there exists *unitary* matrix P s.t. $A = PBP^{\dagger}$ and [P,T] = 0.

Theorem

T-similar matrices have the same universality property.

Theorem

T-similar matrices have the same universality property.

Proof.

Assume A, B are T-similar i.e. $B = PAP^{\dagger}$, where [P, T] = 0. Suppose A is universal.

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

= $e^{-iPAP^{\dagger}t_1}e^{-iTPAP^{\dagger}Tt_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iTPAP^{\dagger}Tt_n} =$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

= $e^{-iPAP^{\dagger}t_1}e^{-iTPAP^{\dagger}Tt_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iTPAP^{\dagger}Tt_n} =$
= $e^{-iPAP^{\dagger}t_1}e^{-iPTATP^{\dagger}t_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iPTATP^{\dagger}t_n} =$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iTPAP^{\dagger}Tt_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iTPAP^{\dagger}Tt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iPTATP^{\dagger}t_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iPTATP^{\dagger}t_n} =$$

$$= Pe^{-iAt_1}P^{\dagger}Pe^{-iTATt_2}P^{\dagger}Pe^{-iAt_3}P^{\dagger}\dots Pe^{-iTATt_n}P^{\dagger} =$$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iTPAP^{\dagger}Tt_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iTPAP^{\dagger}Tt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iPTATP^{\dagger}t_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iPTATP^{\dagger}t_n} =$$

$$= Pe^{-iAt_1}P^{\dagger}Pe^{-iTATt_2}P^{\dagger}Pe^{-iAt_3}P^{\dagger}\dots Pe^{-iTATt_n}P^{\dagger} =$$

$$= Pe^{-iAt_1}e^{-iTATt_2}e^{-iAt_3}\dots e^{-iTATt_n}P^{\dagger} =$$

Theorem

T-similar matrices have the same universality property.

Proof.

$$U = e^{-iAt_1} e^{-iTATt_2} e^{-iAt_3} \dots e^{-iTATt_n}$$

$$e^{-iBt_1}e^{-iTBTt_2}e^{-iBt_3}\dots e^{-iTBTt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iTPAP^{\dagger}Tt_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iTPAP^{\dagger}Tt_n} =$$

$$= e^{-iPAP^{\dagger}t_1}e^{-iPTATP^{\dagger}t_2}e^{-iPAP^{\dagger}t_3}\dots e^{-iPTATP^{\dagger}t_n} =$$

$$= Pe^{-iAt_1}P^{\dagger}Pe^{-iTATt_2}P^{\dagger}Pe^{-iAt_3}P^{\dagger}\dots Pe^{-iTATt_n}P^{\dagger} =$$

$$= Pe^{-iAt_1}e^{-iTATt_2}e^{-iAt_3}\dots e^{-iTATt_n}P^{\dagger} =$$

$$= PUP^{\dagger}$$

- 1. $U \in \mathcal{SU}(4)$
- 2. U shares an eigenvector with T
- **3**. $U = A \otimes B$

- 1. $U \in \mathcal{SU}(4)$: $\det(PUP^{\dagger}) = \det(U) = 1$
- 2. U shares an eigenvector with T
- **3**. $U = A \otimes B$

- 1. $U \in \mathcal{SU}(4)$: det $(PUP^{\dagger}) = det(U) = 1$ closed!
- 2. U shares an eigenvector with T
- **3**. $U = A \otimes B$

- 1. $U \in \mathcal{SU}(4)$: det $(PUP^{\dagger}) = det(U) = 1$ closed!
- 2. U shares an eigenvector with T closed!
- **3**. $U = A \otimes B$

- 1. $U \in \mathcal{SU}(4)$: det $(PUP^{\dagger}) = det(U) = 1$ closed!
- 2. U shares an eigenvector with T closed!
- 3. $U = A \otimes B$ NOT closed!

- 1. $U \in \mathcal{SU}(4)$: det $(PUP^{\dagger}) = det(U) = 1$ closed!
- 2. U shares an eigenvector with T closed!
- 3. U is *T*-similar to $A \otimes B$

\boldsymbol{U} is non-universal if

- 1. $U \in \mathcal{SU}(4)$: det $(PUP^{\dagger}) = det(U) = 1$ closed!
- 2. U shares an eigenvector with T closed!
- 3. U is T-similar to $A \otimes B$

Complication

It is not straightforward how to check, whether \boldsymbol{U} is T-similar to a tensor product.

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_i with corresponding eigenvectors $|\psi_i\rangle$. Then we define the pattern of U to be

$$\begin{cases} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\ s_1 & s_2 & s_3 & s_4 \end{cases},$$

where $s_i = |\langle s | \psi_i \rangle|^2$ and $|s\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$.

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_i with corresponding eigenvectors $|\psi_i\rangle$. Then we define the pattern of U to be

$$\begin{cases} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\ s_1 & s_2 & s_3 & s_4 \end{cases},$$

where
$$s_i = |\langle s | \psi_i \rangle|^2$$
 and $|s\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$.

Why singlet?

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_i with corresponding eigenvectors $|\psi_i\rangle$. Then we define the pattern of U to be

$$\begin{cases} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \\ s_1 & s_2 & s_3 & s_4 \end{cases},$$

where
$$s_i = |\langle s | \psi_i \rangle|^2$$
 and $|s\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$.

Why singlet?

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$E_{-} = \operatorname{span}\{|01\rangle - |10\rangle\} \qquad E_{+} = \operatorname{span}\{|00\rangle, |01\rangle + |10\rangle, |11\rangle\}$$

T-similarity and patterns

Theorem $U, V \in \mathcal{U}(4)$ are *T*-similar iff they have the same patterns.

T-similarity and patterns

Theorem $U, V \in \mathcal{U}(4)$ are *T*-similar iff they have the same patterns.

Theorem

 $U \in \mathcal{U}(4)$ is T-similar to a tensor product iff U has pattern of the form

T-similarity and patterns

Theorem $U, V \in \mathcal{U}(4)$ are *T*-similar iff they have the same patterns.

Theorem

 $U \in \mathcal{U}(4)$ is T-similar to a tensor product iff U has pattern of the form

$$\begin{cases} \lambda_{11} \quad \lambda_{12} \quad \lambda_{21} \quad \lambda_{22} \\ s \quad t \quad t \quad s \end{cases} , \text{ where } \lambda_{11}\lambda_{22} = \lambda_{12}\lambda_{21}.$$

- 1. U is T-similar to a tensor product
- 2. U shares an eigenvector with T
- **3**. $U \in \mathcal{SU}(4)$

Proving universality

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Definition Lie algebra $\mathcal{L}(H_1, H_2)$ generated by H_1 and H_2 satisfies: 1. $H_1, H_2 \in \mathcal{L}$,

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Definition

Lie algebra $\mathcal{L}(H_1, H_2)$ generated by H_1 and H_2 satisfies:

- 1. $H_1, H_2 \in \mathcal{L}$,
- 2. $A, B \in \mathcal{L} \Rightarrow \alpha A + \beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Definition

Lie algebra $\mathcal{L}(H_1, H_2)$ generated by H_1 and H_2 satisfies:

- 1. $H_1, H_2 \in \mathcal{L}$,
- 2. $A, B \in \mathcal{L} \Rightarrow \alpha A + \beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
- 3. $A, B \in \mathcal{L} \Rightarrow i[A, B] = i(AB BA) \in \mathcal{L}.$

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Definition

Lie algebra $\mathcal{L}(H_1, H_2)$ generated by H_1 and H_2 satisfies:

- 1. $H_1, H_2 \in \mathcal{L}$,
- 2. $A, B \in \mathcal{L} \Rightarrow \alpha A + \beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
- 3. $A, B \in \mathcal{L} \Rightarrow i[A, B] = i(AB BA) \in \mathcal{L}.$

Think of \mathcal{L} as a *vector space* with operation $i[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$.

Given Hamiltonians H_1 and H_2 , we can simulate evolution according to:

- ▶ linear combination $\alpha H_1 + \beta H_2$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i[H_1, H_2] = i(H_1H_2 H_2H_1)$.

Definition

Lie algebra $\mathcal{L}(H_1, H_2)$ generated by H_1 and H_2 satisfies:

- 1. $H_1, H_2 \in \mathcal{L}$,
- 2. $A, B \in \mathcal{L} \Rightarrow \alpha A + \beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
- 3. $A, B \in \mathcal{L} \Rightarrow i[A, B] = i(AB BA) \in \mathcal{L}.$

Think of \mathcal{L} as a vector space with operation $i[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$. In our case $H_1 = H$ and $H_2 = THT$.

Baker-Campbell-Hausdorff formula

$$e^{-iH_1t_1}e^{-iH_2t_2} = e^{-iH}$$
$$H = H_1t_1 + H_2t_2 - \frac{t_1t_2}{2}i[H_1, H_2] + \frac{t_1^2t_2}{12}i[H_1, i[H_1, H_2]] + \frac{t_1t_2^2}{12}i[H_2, i[H_2, H_1]] + \dots$$

Baker-Campbell-Hausdorff formula

$$e^{-iH_1t_1}e^{-iH_2t_2} = e^{-iH}$$
$$H = H_1t_1 + H_2t_2 - \frac{t_1t_2}{2}i[H_1, H_2] + \frac{t_1^2t_2}{12}i[H_1, i[H_1, H_2]] + \frac{t_1t_2^2}{12}i[H_2, i[H_2, H_1]] + \dots$$

Corollary

We can simulate $U \in \mathcal{U}(4)$ using H and THT iff $U = e^{-iL}$ for some $L \in \mathcal{L}(H, THT)$.

Baker-Campbell-Hausdorff formula

$$e^{-iH_1t_1}e^{-iH_2t_2} = e^{-iH}$$
$$H = H_1t_1 + H_2t_2 - \frac{t_1t_2}{2}i[H_1, H_2] + \frac{t_1^2t_2}{12}i[H_1, i[H_1, H_2]] + \frac{t_1t_2^2}{12}i[H_2, i[H_2, H_1]] + \dots$$

Corollary

We can simulate $U \in \mathcal{U}(4)$ using H and THT iff $U = e^{-iL}$ for some $L \in \mathcal{L}(H, THT)$.

Universality condition

Hamiltonian H is universal iff H and THT generate the whole Lie algebra of U(4).

Matrix basis Pauli matrices form a *basis* of all 2×2 Hermitian matrices:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Matrix basis Pauli matrices form a *basis* of all 2×2 Hermitian matrices:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and THT that give 16 linearly independent matrices (e.g., basis elements).
Matrix basis Pauli matrices form a *basis* of all 2×2 Hermitian matrices:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and THT that give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme

Since commutator is linear in both arguments, it suffices to use only commutators. We call such list a commutator scheme.

Matrix basis Pauli matrices form a *basis* of all 2×2 Hermitian matrices:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and THT that give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme

Since commutator is linear in both arguments, it suffices to use only commutators. We call such list a commutator scheme.

Example

 $H, THT, i[H, THT], i[H, i[H, THT]], i[THT, i[H, THT]], \ldots$

Proving universality

Algorithm

1. let $S_0 = \{H, THT\}$

2. repeat

- 3. compute $C = S_{i-1} \cup \{i[A, B] | A, B \in S_{i-1}\}$
- 4. take S_i to be any basis of $\operatorname{span}_{\mathbb{R}} C$
- 5. **until** span_{\mathbb{R}} $S_i = \operatorname{span}_{\mathbb{R}} S_{i-1}$
- 6. *H* is universal iff S_i span all 4×4 Hermitian matrices.

Summary and open questions

Summary

Theorem

Unitary \boldsymbol{U} is non-universal iff at least one of the following holds

- 1. U is T-similar to $A\otimes B$
- 2. U shares an eigenvector with T
- **3**. $U \in \mathcal{SU}(4)$

Summary

Theorem

Unitary U is non-universal iff at least one of the following holds

- 1. U is T-similar to $A\otimes B$
- 2. U shares an eigenvector with T
- **3**. $U \in \mathcal{SU}(4)$

Theorem

Hamiltonian H is non-universal iff at least one of the following holds

- 1. *H* is *T*-similar to $H_1 \otimes I + I \otimes H_2$
- 2. H shares an eigenvector with T
- **3**. Tr(H) = 0

Open questions

1. Which 2-qubit Hamiltonians become universal if we allow ancilla?

Open questions

- 1. Which 2-qubit Hamiltonians become universal if we allow ancilla?
- 2. Which 2-qubit Hamiltonians give us encoded universality (e.g. generate O(4))?

Open questions

- 1. Which 2-qubit Hamiltonians become universal if we allow ancilla?
- 2. Which 2-qubit Hamiltonians give us encoded universality (e.g. generate O(4))?
- Which 2-qubit Hamiltonians become universal on n qubits (e.g. take n = 3)?

Thank you!