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» simulation of entire 1/(4) is required
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Definition
2-qubit Hamiltonian H is universal if we can simulate any unitary
UecU(4) using H and THT.

Question
Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

» Finite list of conditions

» Effectively checkable

Previous results
Almost any 2-qubit Hamiltonian is universal.
[Lloyd ‘95; Deutsch, Barenco, Eckert '95]
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Reformulating the question for unitaries
Definition
Unitary U € U(4) corresponds to 2-qubit Hamiltonian H if

U=e¢#H

Exponentiating Hamiltonian H = Y. \; |v;) (v;]
e tH — Z et [v;) (vi]
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—iH
e =t 21 31

+ ...

Definition
We say unitary U is universal if the corresponding Hamiltonian is
universal.
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Non-universal unitaries

If we can implement unitary U = ¢~/ then we can also

implement
» Ul forall real t >0, as Ul = (e*iH)t — o tHt
» TU'T for all real t > 0, as TU'T = Te T = ¢—iTHT?

Can you think of a clearly non-universal unitary?

» Consider U = A® B

Ut — At ® Bt
TU'T =T(A'® B")T = B' @ A*
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Non-universal unitaries cont.

We can implement: U, TU'T Vt > 0, where T = (

el ele)
oco~Oo

—OooOo
\_/

[elelelty

1000
» Consider U = (8 u(3)>
0

U*00) = |00)
TU'T |00) = |00)
Generalization: U and T have a common eigenvector
» Consider U = e~ s.t. det(U) = 1 or equivalently Tr(H) = 0
det (Ut) = det (e*"Ht) — Tt — 0 — 1
det(TU'T) = det 2(T) det(U?) = (-1)?- 1 =1



Non-universal gates - resume

U is non-universal if

1. U=A®B
2. U shares an eigenvector with T'
3. U eSU4)



Transformations that preserve
universality
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Definition
Matrices A and B are said to be T-similar if there exists unitary
matrix P s.t. A= PBP' and [P,T] = 0.
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T-similarity

Theorem
T'-similar matrices have the same universality property.

Proof.
Assume A, B are T-similar i.e. B = PAPT, where [P,T] = 0.

Suppose A is universal. Then we can express any U € U(4) as

U= e—iAtle—iTATtQ 6—iAt3 o e—iTATtn

e—ZBt1e—ZTBTth—’LBt3 o e—ZTBTtn —
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Closing non-universal unitaries under T-similarity

U is non-universal if
1. U € SU(4): det(PUPT) = det(U) = 1 closed!
2. U shares an eigenvector with T' closed!
3. Uis T-similar to A® B

Complication

It is not straightforward how to check, whether U is T-similar to a
tensor product.
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Introducing pattern

Definition
Assume U € U(4) has eigenvalues \; with corresponding
eigenvectors [¢;). Then we define the pattern of U to be

Al A A3 N\
S1 S22 S3 S4 ’
where s; = |(s]tp;)]* and |s) = 7(|01) |10)).

Why singlet?

E_ = span{|01) — |10)} E, =span{|00),|01) +|10),|11)}
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T-similarity and patterns

Theorem
U,V € U(4) are T-similar iff they have the same patterns.

Theorem
U € U(4) is T-similar to a tensor product iff U has pattern of the
form

A1 A2 Aor
S t t

)\52} s where )\11)\22 = )\12)\21.

U is non-universal if

1. U is T-similar to a tensor product
2. U shares an eigenvector with T’
3. U eSU4)
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What can we generate?

Given Hamiltonians H; and Hs,
we can simulate evolution according to:

» linear combination aHy + BHy, for all a, § € R,
» commutator i[Hy, Hy] = i(H1Hy — HoHy).

Definition
Lie algebra L(H;, H2) generated by Hy and H satisfies:
1. H,Hy € L,
2. ABeL=aA+pBeLforall a,f €R,
3. AABe L=i[A,B]=i(AB — BA) € L.
Think of L as a vector space with operation i[-,-] : L x L — L.
In our case Hy = H and Hy, = THT.
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What can we generate?

Baker-Campbell-Hausdorff formula

e—iHltle—’iHQtQ — e—ZH

t1t
H = Hqit1 + Hoty — Z[Hl,H2]+ [Hl,l[Hl,H2”+ 'L[H2774[H2:H1H

12

Corollary
We can simulate U € U(4) using H and THT iff U = e~*F for
some L € L(H,THT).

Universality condition

Hamiltonian H is universal iff H and T HT generate the whole Lie
algebra of U(4).
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Matrix basis
Pauli matrices form a basis of all 2 x 2 Hermitian matrices:

) () o0 G )

A basis of 4 x 4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing
only commutators and linear combinations of H and THT that
give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme
Since commutator is linear in both arguments, it suffices to use
only commutators. We call such list a commutator scheme.

Example
H,THT,i[H,THT),i[H,i{[H, THT)),{THT,i[H, THT]],. ..



Proving universality

Algorithm
. let So ={H,THT}

1
2. repeat

3. compute C' = S;_1 U{i[A,B]|A,B € S;_1}

4. take S; to be any basis of spanp C

5. until spang S; = spang S;_1

6. H is universal iff .S; span all 4 x 4 Hermitian matrices.
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Summary

Theorem
Unitary U is non-universal iff at least one of the following holds

1. U isT-similar to A® B
2. U shares an eigenvector with T
3. U eSU4)

Theorem
Hamiltonian H is non-universal iff at least one of the following
holds

1. H isT-similar to HH @ I + 1 ® Ho
2. H shares an eigenvector with T
3. Tr(H) =0
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Open questions

1. Which 2-qubit Hamiltonians become universal if we allow
ancilla?

2. Which 2-qubit Hamiltonians give us encoded universality (e.g.
generate O(4))?

3. Which 2-qubit Hamiltonians become universal on n qubits
(e.g. take n =3)?



Thank you!
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