Characterization of universal 2-qubit Hamiltonians

Laura Mancinska,
Andrew Childs, Debbie Leung and Maris Ozols
University of Waterloo, IQC

Outline

1. Introduction
2. Non-universal gate case studies
3. Transformations that preserve universality
4. Proving universality
5. Summary and open questions

Introduction

Suppose we can implement 2-qubit Hamiltonian H.

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement $T H T$, where

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement $T H T$, where

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example

$$
H=\frac{\phi}{2} \sigma_{z} \otimes I+\frac{\theta}{2} I \otimes \sigma_{x}
$$

Suppose we can implement 2-qubit Hamiltonian H. Then we assume that we can also implement THT, where

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example

$$
\begin{aligned}
H & =\frac{\phi}{2} \sigma_{z} \otimes I+\frac{\theta}{2} I \otimes \sigma_{x} \\
T H T & =\frac{\phi}{2} I \otimes \sigma_{z}+\frac{\theta}{2} \sigma_{x} \otimes I
\end{aligned}
$$

Defining universality

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Defining universality

Definition
2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Simulate U means - for all $\varepsilon>0$ there exist $t_{1}, \ldots, t_{n} \geq 0$ s.t.

$$
\left\|U-e^{-i H t_{1}} e^{-i T H T t_{2}} e^{-i H t_{3}} \ldots e^{-i T H T t_{n}}\right\|<\varepsilon
$$

Defining universality

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Simulate U means - for all $\varepsilon>0$ there exist $t_{1}, \ldots, t_{n} \geq 0$ s.t.

$$
\left\|U-e^{-i H t_{1}} e^{-i T H T t_{2}} e^{-i H t_{3}} \ldots e^{-i T H T t_{n}}\right\|<\varepsilon
$$

Note that

- ancilla is not given

Defining universality

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Simulate U means - for all $\varepsilon>0$ there exist $t_{1}, \ldots, t_{n} \geq 0$ s.t.

$$
\left\|U-e^{-i H t_{1}} e^{-i T H T t_{2}} e^{-i H t_{3}} \ldots e^{-i T H T t_{n}}\right\|<\varepsilon
$$

Note that

- ancilla is not given
- one qubit gates are not given

Defining universality

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Simulate U means - for all $\varepsilon>0$ there exist $t_{1}, \ldots, t_{n} \geq 0$ s.t.

$$
\left\|U-e^{-i H t_{1}} e^{-i T H T t_{2}} e^{-i H t_{3}} \ldots e^{-i T H T t_{n}}\right\|<\varepsilon
$$

Note that

- ancilla is not given
- one qubit gates are not given
- simulation of entire $\mathcal{U}(4)$ is required

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Question
Which 2-qubit Hamiltonians are universal?

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Question
Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

- Finite list of conditions
- Effectively checkable

Definition

2-qubit Hamiltonian H is universal if we can simulate any unitary $U \in \mathcal{U}(4)$ using H and $T H T$.

Question

Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

- Finite list of conditions
- Effectively checkable

Previous results
Almost any 2-qubit Hamiltonian is universal.
[Lloyd '95; Deutsch, Barenco, Eckert '95]

Non-universal gate case studies

Reformulating the question for unitaries

Definition
Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$
U=e^{-i H}
$$

Reformulating the question for unitaries

Definition
Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$
U=e^{-i H}
$$

Exponentiating Hamiltonian $H=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
e^{-i H}=\sum_{i} e^{-i \lambda_{i}}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

Reformulating the question for unitaries

Definition
Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$
U=e^{-i H}
$$

Exponentiating Hamiltonian $H=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
\begin{aligned}
& e^{-i H}=\sum_{i} e^{-i \lambda_{i}}\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& e^{-i H}=I+\frac{-i H}{1!}+\frac{(-i H)^{2}}{2!}+\frac{(-i H)^{3}}{3!}+\ldots
\end{aligned}
$$

Reformulating the question for unitaries

Definition
Unitary $U \in \mathcal{U}(4)$ corresponds to 2-qubit Hamiltonian H if

$$
U=e^{-i H}
$$

Exponentiating Hamiltonian $H=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$

$$
\begin{aligned}
& e^{-i H}=\sum_{i} e^{-i \lambda_{i}}\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& e^{-i H}=I+\frac{-i H}{1!}+\frac{(-i H)^{2}}{2!}+\frac{(-i H)^{3}}{3!}+\ldots
\end{aligned}
$$

Definition
We say unitary U is universal if the corresponding Hamiltonian is universal.

Non-universal unitaries

If we can implement unitary $U=e^{-i H}$, then we can also implement

- U^{t} for all real $t \geq 0$, as $U^{t}=\left(e^{-i H}\right)^{t}=e^{-i H t}$

Non-universal unitaries

If we can implement unitary $U=e^{-i H}$, then we can also implement

- U^{t} for all real $t \geq 0$, as $U^{t}=\left(e^{-i H}\right)^{t}=e^{-i H t}$
- $T U^{t} T$ for all real $t \geq 0$, as $T U^{t} T=T e^{-i H t} T=e^{-i T H T t}$

Non-universal unitaries

If we can implement unitary $U=e^{-i H}$, then we can also implement

- U^{t} for all real $t \geq 0$, as $U^{t}=\left(e^{-i H}\right)^{t}=e^{-i H t}$
- $T U^{t} T$ for all real $t \geq 0$, as $T U^{t} T=T e^{-i H t} T=e^{-i T H T t}$

Can you think of a clearly non-universal unitary?

Non-universal unitaries

If we can implement unitary $U=e^{-i H}$, then we can also implement

- U^{t} for all real $t \geq 0$, as $U^{t}=\left(e^{-i H}\right)^{t}=e^{-i H t}$
- $T U^{t} T$ for all real $t \geq 0$, as $T U^{t} T=T e^{-i H t} T=e^{-i T H T t}$

Can you think of a clearly non-universal unitary?

- Consider $U=A \otimes B$

$$
U^{t}=A^{t} \otimes B^{t}
$$

Non-universal unitaries

If we can implement unitary $U=e^{-i H}$, then we can also implement

- U^{t} for all real $t \geq 0$, as $U^{t}=\left(e^{-i H}\right)^{t}=e^{-i H t}$
- $T U^{t} T$ for all real $t \geq 0$, as $T U^{t} T=T e^{-i H t} T=e^{-i T H T t}$

Can you think of a clearly non-universal unitary?

- Consider $U=A \otimes B$

$$
\begin{aligned}
& U^{t}=A^{t} \otimes B^{t} \\
& T U^{t} T=T\left(A^{t} \otimes B^{t}\right) T=B^{t} \otimes A^{t}
\end{aligned}
$$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
U^{t}|00\rangle=|00\rangle
$$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & \\ 0 & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
\begin{aligned}
U^{t}|00\rangle & =|00\rangle \\
T U^{t} T|00\rangle & =|00\rangle
\end{aligned}
$$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
\begin{aligned}
U^{t}|00\rangle & =|00\rangle \\
T U^{t} T|00\rangle & =|00\rangle
\end{aligned}
$$

Generalization: U and T have a common eigenvector

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
\begin{aligned}
U^{t}|00\rangle & =|00\rangle \\
T U^{t} T|00\rangle & =|00\rangle
\end{aligned}
$$

Generalization: U and T have a common eigenvector

- Consider $U=e^{-i H}$ s.t. $\operatorname{det}(U)=1$ or equivalently $\operatorname{Tr}(H)=0$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
\begin{aligned}
U^{t}|00\rangle & =|00\rangle \\
T U^{t} T|00\rangle & =|00\rangle
\end{aligned}
$$

Generalization: U and T have a common eigenvector

- Consider $U=e^{-i H}$ s.t. $\operatorname{det}(U)=1$ or equivalently $\operatorname{Tr}(H)=0$

$$
\operatorname{det}\left(U^{t}\right)=\operatorname{det}\left(e^{-i H t}\right)=e^{-i \operatorname{Tr}(H) t}=e^{0}=1
$$

Non-universal unitaries cont.

We can implement: $U^{t}, T U^{t} T \forall t \geq 0$, where $T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

- Consider $U=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & \\ 0 & \mathcal{U}(3) \\ 0 & & \end{array}\right)$

$$
\begin{aligned}
U^{t}|00\rangle & =|00\rangle \\
T U^{t} T|00\rangle & =|00\rangle
\end{aligned}
$$

Generalization: U and T have a common eigenvector

- Consider $U=e^{-i H}$ s.t. $\operatorname{det}(U)=1$ or equivalently $\operatorname{Tr}(H)=0$

$$
\begin{aligned}
& \operatorname{det}\left(U^{t}\right)=\operatorname{det}\left(e^{-i H t}\right)=e^{-i \operatorname{Tr}(H) t}=e^{0}=1 \\
& \operatorname{det}\left(T U^{t} T\right)=\operatorname{det}^{2}(T) \operatorname{det}\left(U^{t}\right)=(-1)^{2} \cdot 1=1
\end{aligned}
$$

Non-universal gates - resume

U is non-universal if

1. $U=A \otimes B$
2. U shares an eigenvector with T
3. $U \in \mathcal{S U}(4)$

Transformations that preserve universality

T-similarity

Definition

Matrices A and B are said to be similar if there exists invertible $\operatorname{matrix} P$ s.t. $A=P B P^{-1}$.

T-similarity

Definition

Matrices A and B are said to be similar if there exists invertible matrix P s.t. $A=P B P^{-1}$.

Definition
Matrices A and B are said to be T-similar if there exists unitary matrix P s.t. $A=P B P^{\dagger}$ and $[P, T]=0$.

T-similarity

Theorem
T-similar matrices have the same universality property.

T-similarity

Theorem
T-similar matrices have the same universality property.
Proof.
Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal.

T-similarity

Theorem
T-similar matrices have the same universality property.
Proof.
Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}}
$$

T-similarity

Theorem
T-similar matrices have the same universality property.
Proof.
Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}}
$$

$$
e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}=
$$

T-similarity

Theorem
T-similar matrices have the same universality property.
Proof.
Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
\begin{gathered}
U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} \\
e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}= \\
=e^{-i P A P^{\dagger} t_{1}} e^{-i T P A P^{\dagger} T t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i T P A P^{\dagger} T t_{n}}=
\end{gathered}
$$

T-similarity

Theorem
T-similar matrices have the same universality property.

Proof.

Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
\begin{aligned}
& U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} \\
& e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i T P A P^{\dagger} T t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i T P A P^{\dagger} T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i P T A T P^{\dagger} t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i P T A T P^{\dagger} t_{n}}=
\end{aligned}
$$

T-similarity

Theorem
T-similar matrices have the same universality property.

Proof.

Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
\begin{aligned}
& U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} \\
& e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i T P A P^{\dagger} T t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i T P A P^{\dagger} T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i P T A T P^{\dagger} t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i P T A T P^{\dagger} t_{n}}= \\
& =P e^{-i A t_{1}} P^{\dagger} P e^{-i T A T t_{2}} P^{\dagger} P e^{-i A t_{3}} P^{\dagger} \ldots P e^{-i T A T t_{n}} P^{\dagger}=
\end{aligned}
$$

T-similarity

Theorem
T-similar matrices have the same universality property.

Proof.

Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
\begin{aligned}
& U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} \\
& e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i T P A P^{\dagger} T t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i T P A P^{\dagger} T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i P T A T P^{\dagger} t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i P T A T P^{\dagger} t_{n}}= \\
& =P e^{-i A t_{1}} P^{\dagger} P e^{-i T A T t_{2}} P^{\dagger} P e^{-i A t_{3}} P^{\dagger} \ldots P e^{-i T A T t_{n}} P^{\dagger}= \\
& =P e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} P^{\dagger}=
\end{aligned}
$$

T-similarity

Theorem
T-similar matrices have the same universality property.

Proof.

Assume A, B are T-similar i.e. $B=P A P^{\dagger}$, where $[P, T]=0$. Suppose A is universal. Then we can express any $U \in \mathcal{U}(4)$ as

$$
\begin{aligned}
& \quad U=e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} \\
& e^{-i B t_{1}} e^{-i T B T t_{2}} e^{-i B t_{3}} \ldots e^{-i T B T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i T P A P^{\dagger} T t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i T P A P^{\dagger} T t_{n}}= \\
& =e^{-i P A P^{\dagger} t_{1}} e^{-i P T A T P^{\dagger} t_{2}} e^{-i P A P^{\dagger} t_{3}} \ldots e^{-i P T A T P^{\dagger} t_{n}}= \\
& =P e^{-i A t_{1}} P^{\dagger} P e^{-i T A T t_{2}} P^{\dagger} P e^{-i A t_{3}} P^{\dagger} \ldots P e^{-i T A T t_{n}} P^{\dagger}= \\
& =P e^{-i A t_{1}} e^{-i T A T t_{2}} e^{-i A t_{3}} \ldots e^{-i T A T t_{n}} P^{\dagger}= \\
& =P U P^{\dagger}
\end{aligned}
$$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4)$
2. U shares an eigenvector with T
3. $U=A \otimes B$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$
2. U shares an eigenvector with T
3. $U=A \otimes B$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$ closed!
2. U shares an eigenvector with T
3. $U=A \otimes B$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$ closed!
2. U shares an eigenvector with T closed!
3. $U=A \otimes B$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$ closed!
2. U shares an eigenvector with T closed!
3. $U=A \otimes B$ NOT closed!

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$ closed!
2. U shares an eigenvector with T closed!
3. U is T-similar to $A \otimes B$

Closing non-universal unitaries under T-similarity

U is non-universal if

1. $U \in \mathcal{S U}(4): \operatorname{det}\left(P U P^{\dagger}\right)=\operatorname{det}(U)=1$ closed!
2. U shares an eigenvector with T closed!
3. U is T-similar to $A \otimes B$

Complication

It is not straightforward how to check, whether U is T-similar to a tensor product.

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_{i} with corresponding eigenvectors $\left|\psi_{i}\right\rangle$. Then we define the pattern of U to be

$$
\left\{\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} \\
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right\}
$$

where $s_{i}=\left|\left\langle s \mid \psi_{i}\right\rangle\right|^{2}$ and $|s\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_{i} with corresponding eigenvectors $\left|\psi_{i}\right\rangle$. Then we define the pattern of U to be

$$
\left\{\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} \\
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right\}
$$

where $s_{i}=\left|\left\langle s \mid \psi_{i}\right\rangle\right|^{2}$ and $|s\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.

Why singlet?

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Introducing pattern

Definition

Assume $U \in \mathcal{U}(4)$ has eigenvalues λ_{i} with corresponding eigenvectors $\left|\psi_{i}\right\rangle$. Then we define the pattern of U to be

$$
\left\{\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} \\
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right\}
$$

where $s_{i}=\left|\left\langle s \mid \psi_{i}\right\rangle\right|^{2}$ and $|s\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.

Why singlet?

$$
\begin{gathered}
T=\left(\begin{array}{cccc}
1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
E_{-}=\operatorname{span}\{|01\rangle-|10\rangle\} \quad \begin{array}{l}
\text { + }
\end{array}=\operatorname{span}\{|00\rangle,|01\rangle+|10\rangle,|11\rangle\}
\end{gathered}
$$

T-similarity and patterns

Theorem
$U, V \in \mathcal{U}(4)$ are T-similar iff they have the same patterns.

T-similarity and patterns

Theorem
$U, V \in \mathcal{U}(4)$ are T-similar iff they have the same patterns.

Theorem
$U \in \mathcal{U}(4)$ is T-similar to a tensor product iff U has pattern of the form

$$
\left\{\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \lambda_{21} & \lambda_{22} \\
s & t & t & s
\end{array}\right\}, \text { where } \lambda_{11} \lambda_{22}=\lambda_{12} \lambda_{21}
$$

T-similarity and patterns

Theorem
$U, V \in \mathcal{U}(4)$ are T-similar iff they have the same patterns.

Theorem
$U \in \mathcal{U}(4)$ is T-similar to a tensor product iff U has pattern of the form

$$
\left\{\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \lambda_{21} & \lambda_{22} \\
s & t & t & s
\end{array}\right\}, \text { where } \lambda_{11} \lambda_{22}=\lambda_{12} \lambda_{21}
$$

U is non-universal if

1. U is T-similar to a tensor product
2. U shares an eigenvector with T
3. $U \in \mathcal{S U}(4)$

Proving universality

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

Definition

Lie algebra $\mathcal{L}\left(H_{1}, H_{2}\right)$ generated by H_{1} and H_{2} satisfies:

1. $H_{1}, H_{2} \in \mathcal{L}$,

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

Definition

Lie algebra $\mathcal{L}\left(H_{1}, H_{2}\right)$ generated by H_{1} and H_{2} satisfies:

1. $H_{1}, H_{2} \in \mathcal{L}$,
2. $A, B \in \mathcal{L} \Rightarrow \alpha A+\beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

Definition

Lie algebra $\mathcal{L}\left(H_{1}, H_{2}\right)$ generated by H_{1} and H_{2} satisfies:

1. $H_{1}, H_{2} \in \mathcal{L}$,
2. $A, B \in \mathcal{L} \Rightarrow \alpha A+\beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
3. $A, B \in \mathcal{L} \Rightarrow i[A, B]=i(A B-B A) \in \mathcal{L}$.

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

Definition

Lie algebra $\mathcal{L}\left(H_{1}, H_{2}\right)$ generated by H_{1} and H_{2} satisfies:

1. $H_{1}, H_{2} \in \mathcal{L}$,
2. $A, B \in \mathcal{L} \Rightarrow \alpha A+\beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
3. $A, B \in \mathcal{L} \Rightarrow i[A, B]=i(A B-B A) \in \mathcal{L}$.

Think of \mathcal{L} as a vector space with operation $i[\cdot, \cdot]: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$.

What can we generate?

Given Hamiltonians H_{1} and H_{2}, we can simulate evolution according to:

- linear combination $\alpha H_{1}+\beta H_{2}$, for all $\alpha, \beta \in \mathbb{R}$,
- commutator $i\left[H_{1}, H_{2}\right]=i\left(H_{1} H_{2}-H_{2} H_{1}\right)$.

Definition

Lie algebra $\mathcal{L}\left(H_{1}, H_{2}\right)$ generated by H_{1} and H_{2} satisfies:

1. $H_{1}, H_{2} \in \mathcal{L}$,
2. $A, B \in \mathcal{L} \Rightarrow \alpha A+\beta B \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$,
3. $A, B \in \mathcal{L} \Rightarrow i[A, B]=i(A B-B A) \in \mathcal{L}$.

Think of \mathcal{L} as a vector space with operation $i[\cdot, \cdot]: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$. In our case $H_{1}=H$ and $H_{2}=T H T$.

What can we generate?

Baker-Campbell-Hausdorff formula

$$
\begin{gathered}
e^{-i H_{1} t_{1}} e^{-i H_{2} t_{2}}=e^{-i H} \\
H=H_{1} t_{1}+H_{2} t_{2}-\frac{t_{1} t_{2}}{2} i\left[H_{1}, H_{2}\right]+\frac{t_{1}^{2} t_{2}}{12} i\left[H_{1}, i\left[H_{1}, H_{2}\right]\right]+\frac{t_{1} t_{2}^{2}}{12} i\left[H_{2}, i\left[H_{2}, H_{1}\right]\right]+\ldots
\end{gathered}
$$

What can we generate?

Baker-Campbell-Hausdorff formula

$$
\begin{gathered}
e^{-i H_{1} t_{1}} e^{-i H_{2} t_{2}}=e^{-i H} \\
H=H_{1} t_{1}+H_{2} t_{2}-\frac{t_{1} t_{2}}{2} i\left[H_{1}, H_{2}\right]+\frac{t_{1}^{2} t_{2}}{12} i\left[H_{1}, i\left[H_{1}, H_{2}\right]\right]+\frac{t_{1} t_{2}^{2}}{12} i\left[H_{2}, i\left[H_{2}, H_{1}\right]\right]+\ldots
\end{gathered}
$$

Corollary
We can simulate $U \in \mathcal{U}(4)$ using H and THT iff $U=e^{-i L}$ for some $L \in \mathcal{L}(H, T H T)$.

What can we generate?

Baker-Campbell-Hausdorff formula

$$
\begin{gathered}
e^{-i H_{1} t_{1}} e^{-i H_{2} t_{2}}=e^{-i H} \\
H=H_{1} t_{1}+H_{2} t_{2}-\frac{t_{1} t_{2}}{2} i\left[H_{1}, H_{2}\right]+\frac{t_{1}^{2} t_{2}}{12} i\left[H_{1}, i\left[H_{1}, H_{2}\right]\right]+\frac{t_{1} t_{2}^{2}}{12} i\left[H_{2}, i\left[H_{2}, H_{1}\right]\right]+\ldots
\end{gathered}
$$

Corollary
We can simulate $U \in \mathcal{U}(4)$ using H and $T H T$ iff $U=e^{-i L}$ for some $L \in \mathcal{L}(H, T H T)$.

Universality condition

Hamiltonian H is universal iff H and $T H T$ generate the whole Lie algebra of $U(4)$.

Matrix basis
Pauli matrices form a basis of all 2×2 Hermitian matrices:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Matrix basis
Pauli matrices form a basis of all 2×2 Hermitian matrices:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and $T H T$ that give 16 linearly independent matrices (e.g., basis elements).

Matrix basis
Pauli matrices form a basis of all 2×2 Hermitian matrices:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and $T H T$ that give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme
Since commutator is linear in both arguments, it suffices to use only commutators. We call such list a commutator scheme.

Matrix basis
Pauli matrices form a basis of all 2×2 Hermitian matrices:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A basis of 4×4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing only commutators and linear combinations of H and $T H T$ that give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme
Since commutator is linear in both arguments, it suffices to use only commutators. We call such list a commutator scheme.

Example
$H, T H T, i[H, T H T], i[H, i[H, T H T]], i[T H T, i[H, T H T]], \ldots$

Proving universality

Algorithm

1. let $S_{0}=\{H, T H T\}$
2. repeat
3. compute $C=S_{i-1} \cup\left\{i[A, B] \mid A, B \in S_{i-1}\right\}$
4. take S_{i} to be any basis of $\operatorname{span}_{\mathbb{R}} C$
5. until $\operatorname{span}_{\mathbb{R}} S_{i}=\operatorname{span}_{\mathbb{R}} S_{i-1}$
6. H is universal iff S_{i} span all 4×4 Hermitian matrices.

Summary and open questions

Summary

Theorem
Unitary U is non-universal iff at least one of the following holds

1. U is T-similar to $A \otimes B$
2. U shares an eigenvector with T
3. $U \in \mathcal{S U}(4)$

Summary

Theorem
Unitary U is non-universal iff at least one of the following holds

1. U is T-similar to $A \otimes B$
2. U shares an eigenvector with T
3. $U \in \mathcal{S U}(4)$

Theorem
Hamiltonian H is non-universal iff at least one of the following holds

1. H is T-similar to $H_{1} \otimes I+I \otimes H_{2}$
2. H shares an eigenvector with T
3. $\operatorname{Tr}(H)=0$

Open questions

1. Which 2-qubit Hamiltonians become universal if we allow ancilla?

Open questions

1. Which 2-qubit Hamiltonians become universal if we allow ancilla?
2. Which 2-qubit Hamiltonians give us encoded universality (e.g. generate $O(4)$)?

Open questions

1. Which 2-qubit Hamiltonians become universal if we allow ancilla?
2. Which 2-qubit Hamiltonians give us encoded universality (e.g. generate $O(4))$?
3. Which 2-qubit Hamiltonians become universal on n qubits (e.g. take $n=3$)?

Thank you!

