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Introduction



Suppose we can implement 2-qubit Hamiltonian H.

Then we
assume that we can also implement THT , where

T =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Example

H = φ
2σz ⊗ I + θ

2I ⊗ σx

THT = φ
2 I ⊗ σz + θ

2σx ⊗ I
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Defining universality

Definition
2-qubit Hamiltonian H is universal if we can simulate any unitary
U ∈ U(4) using H and THT .

Simulate U means - for all ε > 0 there exist t1, . . . , tn ≥ 0 s.t.∥∥U − e−iHt1e−iTHTt2e−iHt3 . . . e−iTHTtn∥∥ < ε

Note that

I ancilla is not given

I one qubit gates are not given

I simulation of entire U(4) is required
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Definition
2-qubit Hamiltonian H is universal if we can simulate any unitary
U ∈ U(4) using H and THT .

Question
Which 2-qubit Hamiltonians are universal?

What kind of answer do we want?

I Finite list of conditions

I Effectively checkable

Previous results
Almost any 2-qubit Hamiltonian is universal.
[Lloyd ‘95; Deutsch, Barenco, Eckert ‘95 ]
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Non-universal gate case studies



Reformulating the question for unitaries

Definition
Unitary U ∈ U(4) corresponds to 2-qubit Hamiltonian H if

U = e−iH

Exponentiating Hamiltonian H =
∑

i λi |vi〉 〈vi|
e−iH =

∑
i

e−iλi |vi〉 〈vi|

e−iH = I +
−iH
1!

+
(−iH)2

2!
+

(−iH)3

3!
+ . . .

Definition
We say unitary U is universal if the corresponding Hamiltonian is
universal.
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Non-universal unitaries

If we can implement unitary U = e−iH , then we can also
implement

I U t for all real t ≥ 0, as U t =
(
e−iH

)t = e−iHt

I TU tT for all real t ≥ 0, as TU tT = Te−iHtT = e−iTHTt

Can you think of a clearly non-universal unitary?

I Consider U = A⊗B

U t = At ⊗Bt

TU tT = T (At ⊗Bt)T = Bt ⊗At
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Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)

U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal unitaries cont.

We can implement: U t, TU tT ∀t ≥ 0, where T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

I Consider U =
( 1 0 0 0

0
0 U(3)
0

)
U t |00〉 = |00〉

TU tT |00〉 = |00〉

Generalization: U and T have a common eigenvector

I Consider U = e−iH s.t. det(U) = 1 or equivalently Tr(H) = 0

det
(
U t
)

= det
(
e−iHt

)
= e−iTr(H)t = e0 = 1

det(TU tT ) = det 2(T ) det(U t) = (−1)2 · 1 = 1



Non-universal gates - resume

U is non-universal if

1. U = A⊗B
2. U shares an eigenvector with T

3. U ∈ SU(4)



Transformations that preserve
universality



T -similarity

Definition
Matrices A and B are said to be similar if there exists invertible
matrix P s.t. A = PBP−1.

Definition
Matrices A and B are said to be T -similar if there exists unitary
matrix P s.t. A = PBP † and [P, T ] = 0.
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T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal.

Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



T -similarity

Theorem
T -similar matrices have the same universality property.

Proof.
Assume A,B are T -similar i.e. B = PAP †, where [P, T ] = 0.
Suppose A is universal. Then we can express any U ∈ U(4) as

U = e−iAt1e−iTATt2e−iAt3 . . . e−iTATtn

e−iBt1e−iTBTt2e−iBt3 . . . e−iTBTtn =

= e−iPAP
†t1e−iTPAP

†Tt2e−iPAP
†t3 . . . e−iTPAP

†Ttn =

= e−iPAP
†t1e−iPTATP

†t2e−iPAP
†t3 . . . e−iPTATP

†tn =

= Pe−iAt1P †Pe−iTATt2P †Pe−iAt3P † . . . P e−iTATtnP † =

= Pe−iAt1e−iTATt2e−iAt3 . . . e−iTATtnP † =

= PUP †



Closing non-universal unitaries under T -similarity

U is non-universal if

1. U ∈ SU(4)

: det(PUP †) = det(U) = 1 closed!

2. U shares an eigenvector with T

closed!

3. U = A⊗B

NOT closed!U is T -similar to A⊗B

Complication

It is not straightforward how to check, whether U is T -similar to a
tensor product.
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Introducing pattern

Definition
Assume U ∈ U(4) has eigenvalues λi with corresponding
eigenvectors |ψi〉. Then we define the pattern of U to be{

λ1 λ2 λ3 λ4

s1 s2 s3 s4

}
,

where si = |〈s|ψi〉|2 and |s〉 = 1√
2
(|01〉 − |10〉).

Why singlet?

T =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

E− = span{|01〉 − |10〉} E+ = span{|00〉 , |01〉+ |10〉 , |11〉}
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T-similarity and patterns

Theorem
U, V ∈ U(4) are T -similar iff they have the same patterns.

Theorem
U ∈ U(4) is T -similar to a tensor product iff U has pattern of the
form {

λ11 λ12 λ21 λ22

s t t s

}
, where λ11λ22 = λ12λ21.

U is non-universal if

1. U is T -similar to a tensor product

2. U shares an eigenvector with T

3. U ∈ SU(4)
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Proving universality



What can we generate?

Given Hamiltonians H1 and H2,
we can simulate evolution according to:

I linear combination αH1 + βH2, for all α, β ∈ R,

I commutator i[H1, H2] = i(H1H2 −H2H1).

Definition
Lie algebra L(H1, H2) generated by H1 and H2 satisfies:

1. H1, H2 ∈ L,

2. A,B ∈ L ⇒ αA+ βB ∈ L for all α, β ∈ R,

3. A,B ∈ L ⇒ i[A,B] = i(AB −BA) ∈ L.

Think of L as a vector space with operation i[·, ·] : L × L → L.

In our case H1 = H and H2 = THT .
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What can we generate?

Baker-Campbell-Hausdorff formula

e−iH1t1e−iH2t2 = e−iH

H = H1t1 +H2t2 −
t1t2

2
i[H1, H2] +

t21t2

12
i[H1, i[H1, H2]] +

t1t22
12

i[H2, i[H2, H1]] + . . .

Corollary

We can simulate U ∈ U(4) using H and THT iff U = e−iL for
some L ∈ L(H,THT ).

Universality condition

Hamiltonian H is universal iff H and THT generate the whole Lie
algebra of U(4).
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Matrix basis
Pauli matrices form a basis of all 2× 2 Hermitian matrices:

I =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
A basis of 4× 4 Hermitian matrices consists of 16 elements.

Universality certificate

To show that H is universal, provide a list of expressions containing
only commutators and linear combinations of H and THT that
give 16 linearly independent matrices (e.g., basis elements).

Commutator scheme
Since commutator is linear in both arguments, it suffices to use
only commutators. We call such list a commutator scheme.

Example

H,THT, i[H,THT ], i[H, i[H,THT ]], i[THT, i[H,THT ]], . . .
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Proving universality

Algorithm

1. let S0 = {H,THT}
2. repeat

3. compute C = Si−1 ∪ {i[A,B]|A,B ∈ Si−1}
4. take Si to be any basis of spanRC

5. until spanR Si = spanR Si−1

6. H is universal iff Si span all 4× 4 Hermitian matrices.
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Summary

Theorem
Unitary U is non-universal iff at least one of the following holds

1. U is T -similar to A⊗B
2. U shares an eigenvector with T

3. U ∈ SU(4)

Theorem
Hamiltonian H is non-universal iff at least one of the following
holds

1. H is T -similar to H1 ⊗ I + I ⊗H2

2. H shares an eigenvector with T

3. Tr(H) = 0
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Open questions

1. Which 2-qubit Hamiltonians become universal if we allow
ancilla?

2. Which 2-qubit Hamiltonians give us encoded universality (e.g.
generate O(4))?

3. Which 2-qubit Hamiltonians become universal on n qubits
(e.g. take n = 3)?
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Thank you!
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