
The Solovay-Kitaev theorem

Maris Ozols

December 10, 2009

1 Introduction

There are several accounts of the Solovay-Kitaev theorem available [K97, NC00,
KSV02, DN05]. I chose to base my report on [NC00], since it involves the Bloch
sphere representation of the qubit which I like a lot. The drawback of my choice
is that the proof of the Solovay-Kitaev theorem in [NC00] is somewhat sketchy
and there are lots of gaps (mostly provided as exercises) left to be filled in. I
tried to fill them in as much as I could and make my presentation self-contained
and rigorous. However, there are still some details (indicated by gray notes on
the margin of the page) that are either missing or I am not certain about.

1.1 Universal gate sets

Various sets of universal quantum gates are known. Among the most well known
ones are:

• CNOT and all 1-qubit gates,

• CNOT, H, and T (π8 -gate),

• Toffoli and H (with ancillas can approximate any orthogonal matrix).

In the first case one can implement any quantum circuit exactly. However, from
a practical point of view it may be more advantageous to consider a discrete
universal gate set (i.e., one that can be used to approximate any quantum
circuit), since then one can hope for a fault-tolerant implementation.

Since the number of gates required to perform a computation is used as a
measure of complexity, it is a fundamental question whether one can translate
a quantum circuit composed of gates from one universal set to another one
without too much overhead.

1.2 Motivation

Assume that we are given a family of quantum circuits (e.g., for Grover’s algo-
rithm) consisting of CNOT gates and f(n) 1-qubit gates, but we have to run it
on a quantum computer, where CNOT is available, but instead of, say H and

1



T , another set G of 1-qubit is available. If we approximate each 1-qubit gate
in the circuit with gates from G so that the error is at most ε/f(n), then the
overall error will be bounded by ε. We need something like f(n)/ε gates to do
this for each 1-qubit gate, so in total we need roughly f(n)2/ε gates.

However, the Solovay-Kitaev theorem states that we can get tolerance ε/f(n)
for 1-qubit gates only by using O

(
logc(f(n)/ε)

)
gates from G, so that the total

cost of the algorithm is O
(
f(n) logc(f(n)/ε)

)
.

1.3 Definitions

1.3.1 Topology of metric spaces

Let X be a metric space and d(·, ·) be the corresponding metric.

Definition. Let A,N ⊂ X (N finite) and ε > 0. N is called an ε-net for A if

∀a ∈ A ∃p ∈ N : d(a, p) < ε. (1)

Example. {0, 1, 2, 3} is a (2/3)-net for the interval [0, 3].

Definition. D ⊂ X is said to be dense in X if

∀x ∈ X ∀ε > 0 ∃p ∈ D : d(x, p) < ε. (2)

Example. Q is dense in R.

1.3.2 Trace norm

The only matrix norm that we will use throughout the paper is the trace norm.
It is defined as follows:

‖A‖ := Tr |A| = Tr
√
A†A. (3)

Alternatively, ‖A‖ is the sum of the singular values of A. If A is normal (A†A =
AA†) and {λ1, . . . , λn} are the eigenvalues of A, then ‖A‖ =

∑n
i=1 |λi|. The

metric induced by the trace norm is given by d(A,B) := ‖A−B‖.
Trace norm satisfies the following properties:

• unitary invariance: ‖UAV ‖ = ‖A‖ for any unitaries U and V ,

• triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖,

• submultiplicativity: ‖AB‖ ≤ ‖A‖ ‖B‖.

1.3.3 Free groups

Definition. The free group generated by a set G is the set 〈G〉 of all finite se-
quences of symbols from

{
g, g−1 | g ∈ G

}
with concatenation of sequences (fol-

lowed by cancellation) as the group operation.
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Example. Z is free (|G| = 1).

Notation. For any integer l ≥ 0 let

Gl := {gα1
1 gα2

2 . . . gαl

l | gi ∈ G, αi = ±1} . (4)

Note that 〈G〉 = G0 ∪ G1 ∪ G2 ∪ . . . , where G0 = {ε} and ε is the empty word.

Remark. If the generating set G is a subset of some group, then expression
gα1
1 gα2

2 . . . gαl

l can naturally be interpreted in two ways. One can think of con-
catenation and inversion as formal operations on labels representing the ele-
ments of G. However, one can use the underlying group structure instead and
perform multiplication and inversion, respectively, as defined in the group. We
will extensively make use of this twofold meaning.

2 “Shrinking” lemma

Let SU(2) stand for the special unitary group of 2×2 matrices, i.e., 2×2 unitary
matrices of determinant 1. From now on we will assume that the generating set
G is a finite subset of SU(2) that is closed under inverses and 〈G〉 is dense in
SU(2).

Notation. Let Sε := {U ∈ SU(2) : ‖U − I‖ < ε} be an open ε-ball in SU(2)
around the identity.

Lemma (“Shrinking” lemma). There exist constants ε′ and s, such that for
any G and ε ≤ ε′ we have:

Gl is an ε2-net for Sε =⇒ G5l is an sε3-net for S√sε3 .

The essence of this lemma is that it allows to construct better approximations
at the cost of requiring longer sequences of generators and covering a smaller
neighborhood of the identity. We defer its proof to Section 2.3.

To obtain approximations of desired accuracy, one has to apply this lemma
several times. The following corollary just summarizes how the various param-
eters are affected by such iterative application.

Corollary (Iterated “shrinking” lemma). There exist constants ε′ and s, such
that for any G, ε0 ≤ ε′, and k ∈ Z+ we have:

Gl0 is an ε20-net for Sε0 =⇒ Glk is an ε2k-net for Sεk ,

where lk := 5kl0 and εk := (sε0)(3/2)
k

/s.

Proof. Let us repeatedly apply the “shrinking” lemma. One application allows
us to transform the parameters according to the following map:

(l, ε2, ε) 7→
(
5l, sε3,

√
sε3
)
. (5)
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Clearly, after k iterations the first parameter transforms according to l0
k7→ 5kl0,

as required. The second parameter is always the square of the third, so it
remains to understand only the last parameter. We check that

εk 7→
√
sε3k =

√
s

(
(sε0)(3/2)k

s

)3

=
(sε0)(3/2)

k+1

s
= εk+1, (6)

as required. Thus, each application of the “shrinking” lemma increases k by 1.
Hence, k applications gives us parameters (lk, ε

2
k, εk), as required.

In the next two sections we will obtain some auxiliary results that will be
used later (in Section 2.3) to prove the “shrinking” lemma.

2.1 Lie algebra of SU(2)

Let su(n) denote the set of all n×n traceless Hermitian matrices. Here are two
important facts about su(n):

• If H ∈ su(n), then e−iH ∈ SU(n), since det e−iH = e−iTrH = 1 and
e−iH(e−iH)† = e−iH+iH = I.

• If A,B ∈ su(n), then i[A,B] ∈ su(n), since (i[A,B])† = −i(BA− AB) =
i[A,B] and Tr(i[A,B]) = iTr(AB −BA) = 0.

Notation. Let [A,B] := AB − BA and JU, V K := UV U†V † be the additive
(matrix) and the multiplicative (group) commutator, respectively.

Claim 1. Let A,B ∈ su(n) such that ‖A‖ , ‖B‖ ≤ ε for some sufficiently small
ε. Then there is a constant d such that

∥∥e−[A,B] − Je−iA, e−iBK
∥∥ ≤ dε3.

Proof. The Taylor expansion for the first term is

e−[A,B] = I − [A,B] +
1

2
[A,B]2 − . . . . (7)

To expand Je−iA, e−iBK, note that

e−iA = I − iA− A2

2
+ . . . , (8)

e+iA = I + iA− A2

2
− . . . , (9)

which gives

e−iAe−iBeiAeiB =
(
I − iA− A2

2
+ . . .

)(
I − iB − B2

2
+ . . .

)
(10)(

I + iA− A2

2
− . . .

)(
I + iB − B2

2
− . . .

)
(11)

= I + i2(2AB −AB −BA−A2 −B2)−A2 −B2 + . . . (12)

= I −AB +BA+ . . . (13)

= I − [A,B]− . . . . (14)
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Note that expansions for both terms agree up to the second order. The claim
follows by using the triangle inequality and submultiplicativity of the norm.

Notation. We will use a formal inner product ~r · ~σ to denote the linear com-
bination of Pauli matrices σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, and σz :=

(
1 0
0 −1

)
with

coefficients given by the coordinates of ~r ∈ R3, i.e., ~r · ~σ := rxσx + ryσy + rzσz.

Claim 2. Let ~y, ~z ∈ R3. Then [~y · ~σ, ~z · ~σ] = 2i(~y × ~z) · ~σ, where ~y × ~z is the
cross product of vectors ~y and ~z.

Proof. Consider the commutation relations of Pauli matrices: [σj , σk]l = 2iεjkl,
and the definition of the cross product on the standard basis: (~ej × ~ek)l = εjkl,
where εjkl is the totally antisymmetric Levi-Civita symbol. The claim follows
by linearity.

Notation. Let u : R3 → SU(2) be the map u(~r) := exp(− i
2~r · ~σ). It provides a

correspondence between the Lie algebra su(2) and the Lie group SU(2).

Claim 3. Let ~y, ~z ∈ R3. Then exp
(
−[ 12~y · ~σ,

1
2~z · ~σ]

)
= u(~y × ~z).

Proof. From Claim 2 we have: exp
(
−[ 12~y · ~σ,

1
2~z · ~σ]

)
= exp

(
−2i( 1

2~y ×
1
2~z)
)

=

exp
(
− i

2 (~y × ~z)
)

= u(~y × ~z).

2.2 Distance relations

In this section we will relate the distance of elements from SU(2) to the distance
of the corresponding vectors in R3.

Claim 4. Let ~r ∈ R3. Then ‖u(~r)− I‖ = 4 sin |~r|4 .

Proof. Note that the eigenvalues of ~r · ~σ are ± |~r|, because the characteristic
polynomial of ~r · ~σ is

det(~r · ~σ − λI) =

∣∣∣∣ rz − λ rx − iry
rx + iry −rz − λ

∣∣∣∣ (15)

= −(rz − λ)(rz + λ)− (rx − iry)(rx + iry) (16)

= −(r2z − λ2)− (r2x − i2r2y) (17)

= λ2 − r2x − r2y − r2z = 0. (18)

Thus, the eigenvalues of u(~r)− I are e±
i
2 |~r| − 1. A simple computation gives

∣∣e± i
2 |~r| − 1

∣∣ =

√(
cos |~r|2 − 1

)2
+
(

sin |~r|2

)2
(19)

=

√(
cos2 |~r|2 − 2 cos |~r|2 + 1

)
+
(

1− cos2 |~r|2

)
(20)

=

√
2− 2 cos |~r|2 = 2

√
1

2

(
1− cos |~r|2

)
= 2 sin

|~r|
4
, (21)

hence ‖u(~r)− I‖ =
∣∣e+ i

2 |~r| − 1
∣∣+
∣∣e− i

2 |~r| − 1
∣∣ = 4 sin |~r|4 .
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Claim 5. Let ~r ∈ R3. If u(~r) ∈ Sε then |~r| < ε+O(ε3).

Proof. From Claim 4 we have: ‖u(~r)− I‖ = 4 sin |~r|4 < ε. Thus, |~r| < 4 arcsin ε
4 .

Result follows from the Taylor expansion arcsin z = z+ 1
2 ·

z3

3 + 1·3
2·4 ·

z5

5 + . . . .

Claim 6. If ~y, ~z ∈ R3 and |~y| , |~z| < ε then ‖u(~y)− u(~z)‖ = |~y − ~z|+O(ε3).

Proof. Using unitary invariance and triangle inequality we get:

‖u(~y)− u(~z)‖ = ‖u(~y)u(~z)† − I‖ (22)

≤ ‖u(~y)u(~z)† − u(~y − ~z)‖+ ‖u(~y − ~z)− I‖. (23)

We have to make sure that the first term is small enough. Then applying Claim 4 How to bound
the 1st term?to the second term we get ‖u(~y − ~z)− I‖ = 4 sin |~y−~z|4 and result follows from

the Taylor expansion sinα = α− α3

3! + α5

5! − . . . .

2.3 Proof of the “shrinking” lemma

Recall the statement of the “shrinking” lemma:

Lemma (“Shrinking” lemma). There exist constants ε′ and s, such that for
any G and ε ≤ ε′ we have:

Gl is an ε2-net for Sε =⇒ G5l is an sε3-net for S√sε3 .

Proof. To prove this lemma, we have to transform the parameters of the net
according to the map (l, ε2, ε) 7→

(
5l, sε3,

√
sε3
)
. Let us first show how to obtain

parameters
(
4l, sε3, ε2

)
.

Given U ∈ Sε2 pick ~x ∈ R3 such that

U = u(~x), |~x| < ε2 +O(ε6), (24)

where the inequality comes from Claim 5. Next, choose ~y, ~z ∈ R3 such that

~x = ~y × ~z, |~y| , |~z| < ε+O(ε5). (25)

(This is possible because |~x| = |~y × ~z| ≤ |~y| |~z|.) Let us approximate u(~y) and
u(~z) by elements of Gl. We use Claim 5 to make sure that u(~y), u(~z) ∈ Sε. Since
Gl is an ε2-net for Sε, we can choose ~y0, ~z0 ∈ R3 such that u(~y0), u(~z0) ∈ Gl ∩Sε
and they are good approximations of u(~y) and u(~z), respectively: I don’t think

we need the
O(ε5) term.‖u(~y0)− I‖ < ε, ‖u(~y0)− u(~y)‖ < ε2 +O(ε5), (26)

‖u(~z0)− I‖ < ε, ‖u(~z0)− u(~z)‖ < ε2 +O(ε5). (27)

We apply Claims 5 and 6 to the first and second column, respectively: O(ε3) in the
2nd column is
just a guess.|~y0| < ε+O(ε3), |~y0 − ~y| < ε2 +O(ε3), (28)

|~z0| < ε+O(ε3), |~z0 − ~z| < ε2 +O(ε3). (29)
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We want to show that ‖u(~x)− Ju(~y0), u(~z0)K‖ < sε3 for some constant s,
i.e., U can be approximated well enough using a sequence of 4l elements from
G (they are needed to implement the group commutator Ju(~y0), u(~z0)K). Let us
use the triangle inequality

‖u(~x)− Ju(~y0), u(~z0)K‖ (30)

≤ ‖u(~x)− u(~y0 × ~z0)‖︸ ︷︷ ︸
D1

+ ‖u(~y0 × ~z0)− Ju(~y0), u(~z0)K‖︸ ︷︷ ︸
D2

(31)

and consider both terms separately.
For the first term we use Claim 6 (note that |~y × ~z| < ε2 + O(ε6) and

|~y0 × ~z0| < ε2 +O(ε4)):

D1 = ‖u(~y × ~z)− u(~y0 × ~z0)‖ (32)

= |~y × ~z − ~y0 × ~z0|+O(ε6) (33)

=
∣∣((~y − ~y0) + ~y0

)
×
(
(~z − ~z0) + ~z0

)
− ~y0 × ~z0

∣∣+O(ε6) (34)

= |(~y − ~y0)× (~z − ~z0) + ~y0 × (~z − ~z0) + (~y − ~y0)× ~z0|+O(ε6) (35)

≤ |(~y − ~y0)× (~z − ~z0)|+ |~y0 × (~z − ~z0)|+ |(~y − ~y0)× ~z0|+O(ε6) (36)

≤ |~y − ~y0| |~z − ~z0|+ |~y0| |~z − ~z0|+ |~y − ~y0| |~z0|+O(ε6) (37)

< cε3 +O(ε4) (38)

for some constant c. For the second term we use Claim 3 and then Claim 1 with
a slightly larger constant d′, since |~y0| and |~z0| can be larger than ε:

D2 =
∥∥exp

(
−[ 12~y0 · ~σ,

1
2~z0 · ~σ]

)
− Jexp(− i

2~y0 · ~σ), exp(− i
2~z0 · ~σ)K

∥∥ ≤ d′ε3. (39)

When we put both terms together, we get ‖U − Ju(~y0), u(~z0)K‖ ≤ sε3 for some
constant s.

It remains to increase the size of the neighborhood that is covered by using
one more sequence of l generators, i.e., we want to transform the parameters(
4l, sε3, ε2

)
to
(
5l, sε3,

√
sε3
)
. Recall that the initial parameters were (l, ε2, ε)

meaning that Gl is an ε2-net for Sε. Thus, for given U ∈ S√sε3 we can find Why does√
sε3 ≤ ε?V ∈ Gl such that ‖U − V ‖ =

∥∥UV † − I∥∥ < ε2 meaning that UV † ∈ Sε2 . Since
G4l is an sε3-net for Sε2 , we can use the first part to find ~y0, ~z0 ∈ R3 such that∥∥UV † − Ju(~y0), u(~z0)K

∥∥ ≤ sε3, which completes the proof.

3 Solovay-Kitaev theorem

Recall that G is a finite subset of SU(2) that is closed under inverses and 〈G〉 is
dense in SU(2).

Theorem (Solovay-Kitaev theorem). There is a constant c such that for any G
and ε > 0 one can choose l = O

(
logc(1/ε)

)
so that Gl is an ε-net for SU(2).
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The iterated “shrinking” lemma allows to obtain a good approximation for
any element of SU(2) that is sufficiently close to identity. To prove the Solovay-
Kitaev theorem, we have to obtain a good approximation for any element of
SU(2). This is done by starting with a rough approximation and then refining
it by invoking the iterated “shrinking” lemma for different values of k (starting
with smaller ones). Intuitively this corresponds to approaching the desired
element by performing steps whose size decreases the closer we get. We adapt
the step size, because larger steps can be implemented using shorter sequences
of generators. In [KSV02] this procedure is referred to as “zooming in”.

Proof (of the Solovay-Kitaev theorem). Let us choose the initial value ε0 so
that ε0 < ε′ to be able to apply the iterated “shrinking” lemma. In addition
we want sε0 < 1 to make sure that εk decreases as we increase k. Moreover, we
also make sure that ε0 is small enough so that ε2k < εk+1.

Since 〈G〉 is dense in SU(2), we can choose l0 large enough1 so that Gl0 is an
ε20-net for SU(2) (and hence for Sε0 as well) no matter how small ε0 is. Thus,
given any U ∈ SU(2), we can choose U0 ∈ Gl0 such that ‖U − U0‖ < ε20. Let

∆1 := UU†0 be the “difference” of U and U0. Then

‖∆1 − I‖ = ‖(U − U0)U†0‖ = ‖U − U0‖ < ε20 < ε1. (40)

Hence, ∆1 ∈ Sε1 . By invoking the iterated “shrinking” lemma with k = 1, there

exists U1 ∈ Gl1 such that ‖∆1 − U1‖ = ‖UU†0 − U1‖ = ‖U − U1U0‖ < ε21.

Similarly, let ∆2 := ∆1U
†
1 = UU†0U

†
1 . Then

‖∆2 − I‖ = ‖(U − U1U0)U†0U
†
1‖ = ‖U − U1U0‖ < ε21 < ε2. (41)

Thus, ∆2 ∈ Sε2 and we can invoke the iterated “shrinking” lemma (with

k = 2 this time) to get U2 ∈ Gl2 such that ‖∆2 − U2‖ = ‖UU†0U
†
1 − U2‖ =

‖U − U2U1U0‖ < ε22.
If we continue in this way, after k steps we get Uk ∈ Glk such that

‖U − UkUk−1 · · ·U0‖ < ε2k. (42)

Thus, we have obtained a sequence of

L =

k∑
m=0

lm =

k∑
m=0

5ml0 =
5k+1 − 1

4
l0 <

5

4
5kl0 (43)

gates that approximates U to accuracy ε2k. To determine the value of k, we set

ε2k =
(
(sε0)(3/2)

k

/s
)2

= ε and solve for k:(
3

2

)k
=

log(1/s2ε)

2 log(1/sε0)
. (44)

1Note that 〈G〉 is an ε20-net for SU(2) as it is dense in SU(2). Thus, the ε20-neighborhoods
of all elements from 〈G〉 form an open cover C of SU(2). Since SU(2) is compact, C has a finite
subcover C′. Clearly, C′ ⊆ Gl0 for some finite value of l0 as C′ is finite.
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Note that we can always choose ε0 slightly smaller so that the obtained value
of k is an integer.2 Let c = log 5/ log(3/2) ≈ 3.97 so that 5k = ( 3

2 )kc. Then

L <
5

4
5kl0 =

5

4

(
3

2

)kc
l0 =

5

4

(
log(1/s2ε)

2 log(1/sε0)

)c
l0. (45)

Hence, for any U ∈ SU(2) there is a sequence of L = O
(
logc(1/ε)

)
gates that

approximates U to accuracy ε.
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