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1. Introduction. Active systems have attracted much interest recently.
They are responsible for the functioning of the cell, motility of different microor-
ganisms [1]. Different unusual properties of these systems are known, for example,
muscle cells of oysters develop high tension keeping them closed by expenditure of
energy. Creation of different systems (gels and other) exhibiting the properties of
active systems has been started in different labs recently [2]. Here we are exploring
the properties of an active system – a suspension of dielectric particles in the liquid
of low conductivity, in which the external energy is supplied by an electric field
[3]. It should be stressed that electrostatic rotary machines are used by bacteria
to sustain their motility [1].

It is shown that the dielectric suspension has several properties typical of the
active living systems - the possibility to sustain the stretched quiescent state, the
autooscillations, which are observed for insect muscles [4] and others. The phys-
ical system considered consists of a dielectric suspension with internal rotations,
which model, for example, the action of the molecular motors, between two plates,
one of which is free to move and connected to a spring. This mimics the thin
filaments of the muscle cells, where titin and nebulin rulers serve as elastic springs
in the sarcomere [1]. We have shown that depending on the physical parameters
the system exhibits different regimes of autooscillations. In some range of the pa-
rameters stressed the steady state sustained by the internal rotations is unstable
and autooscillations arise thus imitating the behavior of the muscle cells.

2. Model. The polarization relaxation equation is given by

dP
dt

= [Ω × P] − 1
τ
(P − χE), (1)

where Ω is the angular velocity of a rotating particle, τ is the Maxwell relaxation
time and χ = χ0 − χ∞, where χ0 and χ∞ are the susceptibilities of suspension
polarization at low and high electric field frequencies, correspondingly. Neglect-
ing an inertia of the small rotating particle, the balance of viscous and electrical
torques gives

α(Ω − Ω0) = [P× E], (2)

where Ω0 is the vorticity of a macroscopic flow and α is the rotational friction
coefficient of the particles per unit volume. Neglecting an inertia of the free plate,
the force balance on the plate along the x-axis reads

−η
S

h

dx

dt
− S

2
[P × E] · ez − kx = 0, (3)

where k is a spring constant, η is the viscosity of the liquid, S is the area of the
plate and h denotes the thickness of the liquid layer. The vorticity of the flow Ω0

in an assumption of Couetta flow can be expressed as

Ω0 = − 1
2h

dx

dt
ez. (4)

http://www.ipul.lv/pamir/ 317



M.Ozols, A. Cēbers

From Ω = Ωez, E = Eey and P = Pxex + Pyey we get [P × E] = EPxez and
[Ω × P] = −ΩPyex + ΩPxey, thus. by excluding Ω from (1, 2, 3, 4) we obtain a
set of equations




ηS

kh

dx

dt
= −SE

2k
Px − x

dPx

dt
=

1
2h

dx

dt
Py − E

α
PxPy − 1

τ
Px

dPy

dt
=

E

α
P 2

x − 1
τ
Py − 1

2h

dx

dt
Px +

χ

τ
E.

(5)

For spontaneous rotation of particles to take place, the strength of an external
electric field must satisfy the condition E > Ec, where E2

c = −α/χτ (of course
,χ < 0 is necessary). A characteristic relaxation time of the plate is τp = ηS/kh.
By substituting t = τpt in (5), the plate relaxation time τp is introduced as a
time scale. Similarly, by substituting x = 2xhτp/τ and Pi = χEPi, we obtain the
following dimensionless system of differential equations:




dx
dt

= −x + aePx

τ

τp

dPx

dt
=

dx
dt

Py + ePxPy − Px

τ

τp

dPy

dt
= −dx

dt
Px − eP2

x − Py + 1,

(6)

where the parameters e and a are expressed as e = E2/E2
c and a = α/4η.

3. Autooscillations. Let us examine the case, when the Maxwell relax-
ation time τ for a particle is much smaller than the characteristic plate relaxation
time τp, i.e., τ/τp → 0. Thus from (6) we obtain an algebraic set of equations




v = −x + aePx

vPy + ePxPy − Px = 0

vPx + eP2
x + Py = 1,

(7)

where v = dx/dt. By excluding v from (7), one can find that the components of
particle’s polarization vector satisfies P2

x + P2
y = Py.

Excluding Px and Py from (7) gives a force (x) and velocity (v) relationship
for the active system:

(v + x)3 + 2av(v + x)2 + a2(v + x)(1 − e + v2) − a3ev = 0. (8)

Let us denote the left side of (8) by F (x, v). Since F (0, v) = 0 has two nontrivial
roots v1,2 = ±a

√
e(a + 1) − 1/(a + 1), the plot of implicit function (8) crosses the

abscissa axis three times when e > 1/(a + 1), as shown in Fig. 1a, where a black
curve contains real roots of equation (8), but gray dots show real parts of com-
plex roots. Positive sloping of x(v) dependence corresponds to a negative friction
coefficient of the active system [5]. Similarly, F (x, 0) = 0 also has two nontrivial
roots x1,2 = ±a

√
e − 1, thus the plot of (8) crosses the ordinate axis three times

when e > 1, as shown in Fig. 1b. These nontrivial roots correspond to a force
created by spontaneous rotations of the particles at e > 1. It is interesting that
the differential friction coefficient for these states in some range of the parameters
explored below is negative. This causes the autooscilations around the stressed
state.
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Fig. 1. Phase portraits of (8), where a = 1.3 and (a) e = 0.8; (b) e = 1.2.

As one can see from Fig. 1, periodic autooscilations take place when there is
a jump from point C1 in the phase plane to C2, where the coordinate is the same,
but the velocity of the oscillating plane is opposite. Similarly, a jump from C3

to C4 happens, thus a closed cycle C1, C2, C3, C4 is formed up. A characteristic
shape of autooscillations is shown in Fig. 2.

Now let us find all values of the parameters e and a, for which such periodic
behavior can be observed. For the jump from C1 to C2 to happen, it is neces-
sary that the maximum of function x(v), i.e., point C1, lies in the first quadrant,
otherwise there will be a stable stationary point on the x-axis, which cannot be
crossed. Thus we have to solve ∂F

(
x(v), v

)
/∂v = 0 together with F

(
x(v), v

)
= 0

with restrictions x > 0 and v > 0. This leads to inequalities

1
a + 1

< e < 2
a + 1
a + 2

, (9)

where a > 0. Indeed, as one can see from graphs similar to Fig. 1, the periodic
behavior cannot observed in either cases: a) if e is too small, i.e., e < 1/(a + 1) or
b) if e is too big, i.e., e > 2(a + 1)/(a + 2).

To define the period of autooscillations, we consider the symmetry of plot
of the implicit function F (x, v) = 0 and that the jump from C1 to C2 happens
momentarily (of course, inequalities (9) must be satisfied for the jump to occur).
By perceiving v as a function of x in the segment C4C1, one can find the period
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Fig. 2. Shape of oscillations x(t), where a = 1.3 and e = 0.8.
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Fig. 3. Period dependence on a.

by integrating dx/v(x), i.e.,

T = 2

+xc∫

−xc

dx
v(x)

where xc is the ordinate of the critical point C1. Period dependence on the pa-
rameters is shown in Fig. 3.

4. Conclusions. We have illustrated here that the dielectric suspension
in the electric field behaves similarly to the active systems of the living world.
The obtained results can be useful forcreating the artificial active systems for
microfluidics and others.
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