

Entropy power inequalities

Entropy power inequalities

Classical	Quantum	
Continuous	Shannon [Sha48]	Koenig \& Smith [KS14, DMG14]
Discrete	-	This work

$$
f\left(\rho \boxplus_{\lambda} \sigma\right) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)
$$

- ρ, σ are distributions / states
- $f(\cdot)$ is an entropic function such as $H(\cdot)$ or $e^{c H(\cdot)}$
- $\rho \boxplus_{\lambda} \sigma$ interpolates between ρ and σ where $\lambda \in[0,1]$

Entropy power inequalities

Continuous	Classical	Quantum
	Shannon [Sha48] $\boxplus=$ convolution	Koenig \& Smith [KS14, DMG14] \boxplus beamsplitter
Discrete	-	This work \boxplus = partial swap

$$
f\left(\rho \boxplus_{\lambda} \sigma\right) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)
$$

- ρ, σ are distributions / states
- $f(\cdot)$ is an entropic function such as $H(\cdot)$ or $e^{c H(\cdot)}$
- $\rho \boxplus_{\lambda} \sigma$ interpolates between ρ and σ where $\lambda \in[0,1]$

Continuous random variables

- X is a random variable over \mathbb{R}^{d} with prob. density function
$f_{X}: \mathbb{R}^{d} \rightarrow[0, \infty) \quad$ s.t. $\quad \int_{\mathbb{R}^{d}} f_{X}(x) d x=1$

Continuous random variables

- X is a random variable over \mathbb{R}^{d} with prob. density function

$$
f_{X}: \mathbb{R}^{d} \rightarrow[0, \infty) \quad \text { s.t. } \quad \int_{\mathbb{R}^{d}} f_{X}(x) d x=1
$$

- αX is X scaled by α :

Continuous random variables

- X is a random variable over \mathbb{R}^{d} with prob. density function

$$
f_{X}: \mathbb{R}^{d} \rightarrow[0, \infty) \quad \text { s.t. } \quad \int_{\mathbb{R}^{d}} f_{X}(x) d x=1
$$

- αX is X scaled by α :

- prob. density of $X+Y$ is the convolution of f_{X} and f_{Y} :

Classical EPI for continuous variables

- Scaled addition:

$$
X \boxplus_{\lambda} Y:=\sqrt{\lambda} X+\sqrt{1-\lambda} Y
$$

Classical EPI for continuous variables

- Scaled addition:

$$
X \boxplus_{\lambda} Y:=\sqrt{\lambda} X+\sqrt{1-\lambda} Y
$$

- Shannon's EPI [Sha48]:

$$
f\left(X \boxplus_{\lambda} Y\right) \geq \lambda f(X)+(1-\lambda) f(Y)
$$

where $f(\cdot)$ is $H(\cdot)$ or $e^{2 H(\cdot) / d}$ (equivalent)

Classical EPI for continuous variables

- Scaled addition:

$$
X \boxplus_{\lambda} Y:=\sqrt{\lambda} X+\sqrt{1-\lambda} Y
$$

- Shannon's EPI [Sha48]:

$$
f\left(X \boxplus_{\lambda} Y\right) \geq \lambda f(X)+(1-\lambda) f(Y)
$$

where $f(\cdot)$ is $H(\cdot)$ or $e^{2 H(\cdot) / d}$ (equivalent)

- Proof via Fisher info \& de Bruijn's identity [Sta59, Bla65]
- Applications:
- upper bounds on channel capacity [Ber74]
- strengthening of the central limit theorem [Bar86]
- ...

Continuous quantum EPI

- Beamsplitter:

$$
B\binom{\hat{a}}{\hat{b}}=\binom{\hat{c}}{\hat{d}} \quad B \in \mathrm{U}(2)
$$

Continuous quantum EPI

- Beamsplitter:

$$
B\binom{\hat{a}}{\hat{b}}=\binom{\hat{c}}{\hat{d}} \quad B \in \mathrm{U}(2)
$$

- Transmissivity λ :

$$
B_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} X \quad \Rightarrow \quad U_{\lambda} \in \mathrm{U}(\mathcal{H} \otimes \mathcal{H})
$$

Continuous quantum EPI

- Beamsplitter:

$$
B\binom{\hat{a}}{\hat{b}}=\binom{\hat{c}}{\hat{d}} \quad B \in \mathrm{U}(2)
$$

- Transmissivity λ :

$$
B_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} X \quad \Rightarrow \quad U_{\lambda} \in \mathrm{U}(\mathcal{H} \otimes \mathcal{H})
$$

- Combining states:

$$
\rho_{1} \boxplus_{\lambda} \rho_{2}:=\operatorname{Tr}_{2}\left(U_{\lambda}\left(\rho_{1} \otimes \rho_{2}\right) U_{\lambda}^{+}\right)
$$

Continuous quantum EPI

- Beamsplitter:

$$
B\binom{\hat{a}}{\hat{b}}=\binom{\hat{c}}{\hat{d}} \quad B \in \mathrm{U}(2)
$$

- Transmissivity λ :

$$
B_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} X \quad \Rightarrow \quad U_{\lambda} \in \mathrm{U}(\mathcal{H} \otimes \mathcal{H})
$$

- Combining states:

$$
\rho_{1} \boxplus_{\lambda} \rho_{2}:=\operatorname{Tr}_{2}\left(U_{\lambda}\left(\rho_{1} \otimes \rho_{2}\right) U_{\lambda}^{\dagger}\right)
$$

- Quantum EPI [KS14, DMG14]:

$$
f\left(\rho_{1} \boxplus_{\lambda} \rho_{2}\right) \geq \lambda f\left(\rho_{1}\right)+(1-\lambda) f\left(\rho_{2}\right)
$$

where $f(\cdot)$ is $H(\cdot)$ or $e^{H(\cdot) / d}$ (not equivalent)

Continuous quantum EPI

- Beamsplitter:

$$
B\binom{\hat{a}}{\hat{b}}=\binom{\hat{c}}{\hat{d}} \quad B \in \mathrm{U}(2)
$$

- Transmissivity λ :

$$
B_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} X \quad \Rightarrow \quad U_{\lambda} \in \mathrm{U}(\mathcal{H} \otimes \mathcal{H})
$$

- Combining states:

$$
\rho_{1} \boxplus_{\lambda} \rho_{2}:=\operatorname{Tr}_{2}\left(U_{\lambda}\left(\rho_{1} \otimes \rho_{2}\right) U_{\lambda}^{\dagger}\right)
$$

- Quantum EPI [KS14, DMG14]:

$$
f\left(\rho_{1} \boxplus_{\lambda} \rho_{2}\right) \geq \lambda f\left(\rho_{1}\right)+(1-\lambda) f\left(\rho_{2}\right)
$$

where $f(\cdot)$ is $H(\cdot)$ or $e^{H(\cdot) / d}$ (not equivalent)

- Analogue, not a generalization

Partial swap

- Swap: $S|i, j\rangle=|j, i\rangle$ for all $i, j \in\{1, \ldots, d\}$

Partial swap

- Swap: $S|i, j\rangle=|j, i\rangle$ for all $i, j \in\{1, \ldots, d\}$
- Use S as a Hamiltonian: $\exp (i t S)=\cos t I+i \sin t S$

Partial swap

- Swap: $S|i, j\rangle=|j, i\rangle$ for all $i, j \in\{1, \ldots, d\}$
- Use S as a Hamiltonian: $\exp (i t S)=\cos t I+i \sin t S$
- Partial swap:

$$
U_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} S, \quad \lambda \in[0,1]
$$

Partial swap

- Swap: $S|i, j\rangle=|j, i\rangle$ for all $i, j \in\{1, \ldots, d\}$
- Use S as a Hamiltonian: $\exp (i t S)=\cos t I+i \sin t S$
- Partial swap:

$$
U_{\lambda}:=\sqrt{\lambda} I+i \sqrt{1-\lambda} S, \quad \lambda \in[0,1]
$$

- Combining two qudits:

$$
\begin{aligned}
\rho_{1} \boxplus_{\lambda} \rho_{2} & :=\operatorname{Tr}_{2}\left(U_{\lambda}\left(\rho_{1} \otimes \rho_{2}\right) U_{\lambda}^{+}\right) \\
& =\lambda \rho_{1}+(1-\lambda) \rho_{2}-\sqrt{\lambda(1-\lambda)} i\left[\rho_{1}, \rho_{2}\right]
\end{aligned}
$$

Main result

Function $f: \mathcal{D}\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{R}$ is

- concave if $f(\lambda \rho+(1-\lambda) \sigma) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)$
- symmetric if $f(\rho)=s(\operatorname{spec}(\rho))$ for some sym. function s

Theorem
Iff is concave and symmetric then for any $\rho, \sigma \in \mathcal{D}\left(\mathbb{C}^{d}\right), \lambda \in[0,1]$

$$
f\left(\rho \boxplus_{\lambda} \sigma\right) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)
$$

Proof
Main tool: majorization. We show that

$$
\operatorname{spec}\left(\rho \boxplus_{\lambda} \sigma\right) \prec \lambda \operatorname{spec}(\rho)+(1-\lambda) \operatorname{spec}(\sigma)
$$

Summary of EPIs

$$
f\left(\rho \boxplus_{\lambda} \sigma\right) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)
$$

	Continuous variable		Discrete
	Classical $(d$ dims)	Quantum $(d$ modes $)$	Quantum $(d$ dims)
entropy $H(\cdot)$	\checkmark	\checkmark	\checkmark
entropy power $\left.e^{c H(}\right)$	$c=2 / d$	$c=1 / d$	$0 \leq c \leq 1 /(\log d)^{2}$
entropy photon number $g^{-1}(c H(\cdot))$	-	$c=1 / d$ $(c o n j e c t u r e d)$	$0 \leq c \leq 1 /(d-1)$

$g(x):=(x+1) \log (x+1)-x \log x$

Open problems

- Entropy photon number inequality for c.v. states
- classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels)
- proved only for Gaussian states so far [Guh08]
- does not seem to follow by taking $d \rightarrow \infty$

Open problems

- Entropy photon number inequality for c.v. states
- classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels)
- proved only for Gaussian states so far [Guh08]
- does not seem to follow by taking $d \rightarrow \infty$
- Conditional version of EPI
- trivial for c.v. distributions
- proved for Gaussian c.v. states [Koe15]
- qudit analogue...?

Open problems

- Entropy photon number inequality for c.v. states
- classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels)
- proved only for Gaussian states so far [Guh08]
- does not seem to follow by taking $d \rightarrow \infty$
- Conditional version of EPI
- trivial for c.v. distributions
- proved for Gaussian c.v. states [Koe15]
- qudit analogue...?
- Generalization to 3 or more systems
- trivial for c.v. distributions
- proved for c.v. states [DMLG15]
- combining three states: [Ozo15]
- proving the EPI...?

Open problems

- Entropy photon number inequality for c.v. states
- classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels)
- proved only for Gaussian states so far [Guh08]
- does not seem to follow by taking $d \rightarrow \infty$
- Conditional version of EPI
- trivial for c.v. distributions
- proved for Gaussian c.v. states [Koe15]
- qudit analogue...?
- Generalization to 3 or more systems
- trivial for c.v. distributions
- proved for c.v. states [DMLG15]
- combining three states: [Ozo15]
- proving the EPI...?
- Applications
- upper bounding product-state classical capacity of certain channels
- more...?

Combining 3 states

Let $\rho=\operatorname{Tr}_{2,3}\left(U\left(\rho_{1} \otimes \rho_{2} \otimes \rho_{3}\right) U^{+}\right)$where $U=\sum_{\pi \in \mathrm{S}_{3}} z_{\pi} Q_{\pi}$ is a linear combination of 3 -qudit permutations. Then [Ozo15]

$$
\begin{aligned}
\rho & =p_{1} \rho_{1}+p_{2} \rho_{2}+p_{3} \rho_{3} \\
& +\sqrt{p_{1} p_{2}} \sin \delta_{12} i\left[\rho_{1}, \rho_{2}\right]+\sqrt{p_{1} p_{2}} \cos \delta_{12}\left(\rho_{2} \rho_{3} \rho_{1}+\rho_{1} \rho_{3} \rho_{2}\right) \\
& +\sqrt{p_{2} p_{3}} \sin \delta_{23} i\left[\rho_{2}, \rho_{3}\right]+\sqrt{p_{2} p_{3}} \cos \delta_{23}\left(\rho_{3} \rho_{1} \rho_{2}+\rho_{2} \rho_{1} \rho_{3}\right) \\
& +\sqrt{p_{3} p_{1}} \sin \delta_{31} i\left[\rho_{3}, \rho_{1}\right]+\sqrt{p_{3} p_{1}} \cos \delta_{31}\left(\rho_{1} \rho_{2} \rho_{3}+\rho_{3} \rho_{2} \rho_{1}\right)
\end{aligned}
$$

for some probability distribution (p_{1}, p_{2}, p_{3}) and angles $\delta_{i j}$ s.t.

$$
\begin{aligned}
& \delta_{12}+\delta_{23}+\delta_{31}=0 \\
& \sqrt{p_{1} p_{2}} \cos \delta_{12}+\sqrt{p_{2} p_{3}} \cos \delta_{23}+\sqrt{p_{3} p_{1}} \cos \delta_{31}=0
\end{aligned}
$$

Conjecture

If f is concave and symmetric then

$$
f(\rho) \geq p_{1} f\left(\rho_{1}\right)+p_{2} f\left(\rho_{2}\right)+p_{3} f\left(\rho_{3}\right)
$$

Main result

Function $f: \mathcal{D}\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{R}$ is

- concave if $f(\lambda \rho+(1-\lambda) \sigma) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)$
- symmetric if $f(\rho)=s(\operatorname{spec}(\rho))$ for some sym. function s

Theorem
Iff is concave and symmetric then for any $\rho, \sigma \in \mathcal{D}\left(\mathbb{C}^{d}\right), \lambda \in[0,1]$

$$
f\left(\rho \boxplus_{\lambda} \sigma\right) \geq \lambda f(\rho)+(1-\lambda) f(\sigma)
$$

Proof
Main tool: majorization. Assume we can show

$$
\operatorname{spec}\left(\rho \boxplus_{\lambda} \sigma\right) \prec \lambda \operatorname{spec}(\rho)+(1-\lambda) \operatorname{spec}(\sigma)
$$

Let $\tilde{\rho}:=\operatorname{diag}(\operatorname{spec}(\rho))$. Then

$$
\begin{aligned}
f\left(\rho \boxplus_{\lambda} \sigma\right) & \geq f(\lambda \tilde{\rho}+(1-\lambda) \tilde{\sigma}) \\
& \geq \lambda f(\tilde{\rho})+(1-\lambda) f(\tilde{\sigma}) \\
& =\lambda f(\rho)+(1-\lambda) f(\sigma)
\end{aligned}
$$

(Schur-concavity)
(concavity)
(symmetry)

Bibliography I

[Bar86] Andrew R. Barron.
Entropy and the central limit theorem.
The Annals of Probability, 14(1):336-342, 1986.
URL: http://projecteuclid.org/euclid.aop/1176992632.
[Ber74] Patrick P. Bergmans.
A simple converse for broadcast channels with additive white Gaussian noise.
Information Theory, IEEE Transactions on, 20(2):279-280, Mar 1974.
doi:10.1109/TIT.1974.1055184.
[Bla65] Nelson M. Blachman.
The convolution inequality for entropy powers.
Information Theory, IEEE Transactions on, 11(2):267-271, Apr 1965.
doi:10.1109/TIT.1965.1053768.
[DMG14] Giacomo De Palma, Andrea Mari, and Vittorio Giovannetti.
A generalization of the entropy power inequality to bosonic quantum systems.
Nature Photonics, 8(12):958-964, 2014.
arXiv:1402.0404, doi:10.1038/nphoton.2014.252.
[DMLG15] Giacomo De Palma, Andrea Mari, Seth Lloyd, and Vittorio Giovannetti. Multimode quantum entropy power inequality.
Phys. Rev. A, 91(3):032320, Mar 2015.
arXiv:1408.6410, doi:10.1103/PhysRevA.91.032320.

Bibliography II

[Guh08] Saikat Guha.
Multiple-user quantum information theory for optical communication channels. PhD thesis, Dept. Electr. Eng. Comput. Sci., MIT, Cambridge, MA, USA, 2008.

URL: http://hdl.handle.net/1721.1/44413.
[Koe15] Robert Koenig.
The conditional entropy power inequality for Gaussian quantum states.
Journal of Mathematical Physics, 56(2):022201, 2015.
arXiv:1304.7031, doi:10.1063/1.4906925.
[KS14] Robert König and Graeme Smith.
The entropy power inequality for quantum systems.
Information Theory, IEEE Transactions on, 60(3):1536-1548, Mar 2014.
arXiv:1205.3409, doi:10.1109/TIT.2014.2298436.
[Ozo15] Maris Ozols.
How to combine three quantum states.
2015.
arXiv:1508.00860.
[Sha48] Claude E. Shannon.
A mathematical theory of communication.
The Bell System Technical Journal, 27:623-656, Oct 1948.
URL: http://cm.bell-labs.com/cm/ms/what/shannonday/
shannon1948.pdf.

Bibliography III

[Sta59] A. J. Stam.
Some inequalities satisfied by the quantities of information of Fisher and Shannon.
Information and Control, 2(2):101-112, Jun 1959.
doi:10.1016/S0019-9958(59) 90348-1.

