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Problem: spatial search on a graph

Setup

I Directed graph on X = U ∪M
I Unknown marked vertices M
I Edges representing legal moves

Goal
I Find any marked vertex
I Complexity = the

number of steps

U M
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Approach: random walk

Setup

I Stochastic matrix P = (Pxy)

I Restriction: Pxy = 0 if (x, y) is not an edge

U M

x

yPxy



Quantum walks

Useful early applications

I Element distinctness [Amb04]
I Triangle finding [MSS05]
I Verification of matrix products [BŠ06]
I Testing group commutativity [MN07]

Random walk→ quantum walk

I A general “quantization” technique [Sze04a]
I Walk on a complete graph→ Grover’s algorithm [Gro96]
I Goal: a quadratic quantum speedup for finding a marked

vertex compared to any random walk
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I Testing group commutativity [MN07]

Random walk→ quantum walk

I A general “quantization” technique [Sze04a]
I Walk on a complete graph→ Grover’s algorithm [Gro96]
I Goal: a quadratic quantum speedup for finding a marked

vertex compared to any random walk



Finding with quadratic speedup

Previous results
I Quadratic speedup for detecting if marked vertices are

present [Sze04a]
I Can find, but no quadratic speedup in general [MNRS07]
I Quadratic speedup for state-transitive Markov chains with

a unique marked vertex [Tul08, MNRS12]

Our contribution
I Quadratic speedup for any Markov chain with a unique

marked vertex [KOR10, KMOR10]
I Note: Markov chain has to be ergodic and reversible
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The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and
M ⊆ X be a set of marked elements. Then a quantum algorithm
can find a marked element in O(

√
HT+) steps where HT+ is

the “extended” hitting time of P

Note
I For any M, HT+ ≥ HT = the hitting time of P
I If |M| = 1, HT+ = HT

Question
Can we find in O(

√
HT) steps for any M?
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Regular vs absorbing walk

Regular walk P Absorbing walk P′

U M U M

P =

(
PUU PUM
PMU PMM

)
P′ =

(
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0 I
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Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M
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“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)

Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1
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Quantum algorithm



Adiabatic version [KOR10]

Construction
I Use the method of Somma

and Ortiz [SO10] to convert
P(s) into a Hamiltonian H(s)

Algorithm

1. Prepare |π〉, the quantum
state corresponding to π

2. Evolve by H(s) while
interpolating s from 0 to 1

Theorem
Let P be an ergodic and reversible Markov chain and assume
the adiabaticity requirement holds H(s). Then the adiabatic
search algorithm finds a marked vertex with probability at least
1− ε2 in time T = π

2ε

√
HT+



Circuit version [KMOR10]

Construction
I Use Szegedy’s method [Sze04a] to define a unitary W(P(s))
I W(P(s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of

W(P(s))

Algorithm

1. Prepare |π〉
2. Project onto |π(s∗)〉 = |πU〉+|πM〉√

2

3. Measure current vertex

Theorem
If the values of pM and HT+ are known, then a quantum
algorithm can find a marked vertex in O

(√
HT+

)
steps



Spatial search on G = (V, E)

I State space: vertex register × workspace
V V ∪ {0̄}

I Locality-respecting move:

SHIFT |x, y〉 :=

{
|y, x〉 if (x, y) ∈ E
|x, y〉 otherwise

I Workspace update:

V(P)|x〉|0̄〉 := |x〉 ∑
y∈X

√
Pxy|y〉

I Szegedy’s walk operator:

W(P) := ref1 · ref2

ref1 := V(P)† SHIFT V(P)
ref2 := I⊗ (2|0̄〉〈0̄| − I)
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Operational definition
Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M. If yes, output x and exit
3. Update x according to P′ and go back to step 2

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉
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Ingredients

Umarked superposition

|U〉 :=
1
√

pU
∑

x∈U

√
πx|x〉

Discriminant matrix
I P(s) is not symmetric. Instead, consider

D(s) :=
√

P(s) ◦ P(s)T

I P(s) and D(s) are similar:

D(s) = diag
(√

π(s)
)

P(s) diag
(√

π(s)
)−1
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Eigenvalues and eigenvectors

I Spectral decomposition:

D(s) =
n

∑
k=1

λk(s)|vk(s)〉〈vk(s)|

0 ≤ λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s) = 1

I Multiplicity of eigenvalue 1:

1 when s ∈ [0, 1)
m when s = 1

I Overlap with |U〉:

〈vk(1)|U〉 = 0 when k > n−m
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Operational definition (continued)

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
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Hitting times

I Hitting time:

HT :=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

I Interpolated HT:

HT(s) :=
n−1

∑
k=1

|〈vk(s)|U〉|2

1− λk(s)

I Extended HT:
HT+ := lim

s→1
HT(s)

Question

What is lim
s→1

|〈vk(s)|U〉|2

1− λk(s)
for k > n−m?
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Example

1 2 3

3/4 1/2 3/4

1/4 1/4

P =
1
4

3 1 0
1 2 1
0 1 3

 M = {2, 3}

HT = 4 HT(s) =
20

(3− s)2 HT+ = 5



Main technical result

I Differential equation for HT(s):

d
ds

HT(s) =
2pU

1− spU
HT(s)

I Solution:

HT(s) =
(

1− pU

1− spU

)2

HT+

s

HT(s) pM = 1.0

pM = 0.2

pM = 0.4

pM = 0.6

pM = 0.8

0 1
0

HT+



Explicit formulas

HT = 〈Ũ|(I−DUU)
−1|Ũ〉

HT+ = 〈Ũ|(I−DUU − S)−1|Ũ〉

where

S := DUM

[
(I−DMM)−1 − (I−DMM)−1|M̃〉〈M̃|(I−DMM)−1

〈M̃|(I−DMM)−1|M̃〉

]
DMU

D :=
(

DUU DUM
DMU DMM

)
|Ũ〉 :=

√
πU

pU
|M̃〉 :=

√
πM

pM

Important points

I HT depends only on transitions between unmarked states
whereas HT+ does not!

I We end up sampling a specific distribution over marked
states—this might be harder than merely finding one!
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where

S := DUM

[
(I−DMM)−1 − (I−DMM)−1|M̃〉〈M̃|(I−DMM)−1

〈M̃|(I−DMM)−1|M̃〉

]
DMU

D :=
(

DUU DUM
DMU DMM

)
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Conclusions
Results

I Quadratic quantum speed-up of HT for reversible, ergodic
Markov chains with 1 marked state

I For multiple marked states, quadratic speedup over HT+

Questions
I What is the meaning of HT(s) and HT+?
I Can we get

√
HT for multiple marked elements?

Related talks
Mon 16:30 Ambanis Quantum search and extended hitting time
Tue 16:30 Montanaro Quantum speedup of backtracking
Wed 10:15 Belovs Quantum walks and electric networks

Thank you!
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