
Quantum walks can findQuantum walks can find
a marked element on any grapha marked element on any graph

Māris OzolsMāris Ozols
University of CambridgeUniversity of Cambridge

arXiv:1002.2419v2

Hari KroviHari Krovi Raytheon BBN TechnologiesRaytheon BBN Technologies

Frédéric MagniezFrédéric Magniez CNRS, LIAFA, Univ Paris DiderotCNRS, LIAFA, Univ Paris Diderot

Jérémie RolandJérémie Roland QuIC, Ecole Polytechnique de Bruxelles,QuIC, Ecole Polytechnique de Bruxelles,
Université Libre de BruxellesUniversité Libre de Bruxelles

http://arxiv.org/abs/1002.2419

Outline

1. Problem and background
2. Main result
3. Classical intuition
4. Quantum algorithm
5. Hitting times

Problem and background

Problem: spatial search on a graph

Setup

I Directed graph on X = U ∪M
I Unknown marked vertices M
I Edges representing legal moves

Goal
I Find any marked vertex
I Complexity = the

number of steps

U M

Problem: spatial search on a graph

Setup

I Directed graph on X = U ∪M
I Unknown marked vertices M
I Edges representing legal moves

Goal
I Find any marked vertex
I Complexity = the

number of steps

U M

Approach: random walk

Setup

I Stochastic matrix P = (Pxy)

I Restriction: Pxy = 0 if (x, y) is not an edge

U M

x

yPxy

Quantum walks

Useful early applications

I Element distinctness [Amb04]
I Triangle finding [MSS05]
I Verification of matrix products [BŠ06]
I Testing group commutativity [MN07]

Random walk→ quantum walk

I A general “quantization” technique [Sze04a]
I Walk on a complete graph→ Grover’s algorithm [Gro96]
I Goal: a quadratic quantum speedup for finding a marked

vertex compared to any random walk

Quantum walks

Useful early applications

I Element distinctness [Amb04]
I Triangle finding [MSS05]
I Verification of matrix products [BŠ06]
I Testing group commutativity [MN07]

Random walk→ quantum walk

I A general “quantization” technique [Sze04a]
I Walk on a complete graph→ Grover’s algorithm [Gro96]
I Goal: a quadratic quantum speedup for finding a marked

vertex compared to any random walk

Finding with quadratic speedup

Previous results
I Quadratic speedup for detecting if marked vertices are

present [Sze04a]
I Can find, but no quadratic speedup in general [MNRS07]
I Quadratic speedup for state-transitive Markov chains with

a unique marked vertex [Tul08, MNRS12]

Our contribution
I Quadratic speedup for any Markov chain with a unique

marked vertex [KOR10, KMOR10]
I Note: Markov chain has to be ergodic and reversible

Finding with quadratic speedup

Previous results
I Quadratic speedup for detecting if marked vertices are

present [Sze04a]
I Can find, but no quadratic speedup in general [MNRS07]
I Quadratic speedup for state-transitive Markov chains with

a unique marked vertex [Tul08, MNRS12]

Our contribution
I Quadratic speedup for any Markov chain with a unique

marked vertex [KOR10, KMOR10]
I Note: Markov chain has to be ergodic and reversible

Main result

The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and
M ⊆ X be a set of marked elements. Then a quantum algorithm
can find a marked element in O(

√
HT+) steps where HT+ is

the “extended” hitting time of P

Note
I For any M, HT+ ≥ HT = the hitting time of P
I If |M| = 1, HT+ = HT

Question
Can we find in O(

√
HT) steps for any M?

The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and
M ⊆ X be a set of marked elements. Then a quantum algorithm
can find a marked element in O(

√
HT+) steps where HT+ is

the “extended” hitting time of P

Note
I For any M, HT+ ≥ HT = the hitting time of P
I If |M| = 1, HT+ = HT

Question
Can we find in O(

√
HT) steps for any M?

The main result question

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and
M ⊆ X be a set of marked elements. Then a quantum algorithm
can find a marked element in O(

√
HT+) steps where HT+ is

the “extended” hitting time of P

Note
I For any M, HT+ ≥ HT = the hitting time of P
I If |M| = 1, HT+ = HT

Question
Can we find in O(

√
HT) steps for any M?

Classical intuition

Regular vs absorbing walk

Regular walk P Absorbing walk P′

U M U M

P =

(
PUU PUM
PMU PMM

)
P′ =

(
PUU PUM

0 I

)
π = (πU, πM) π′ ∝ (0, πM)

Regular vs absorbing walk

Regular walk P Absorbing walk P′

U M U M

P =

(
PUU PUM
PMU PMM

)
P′ =

(
PUU PUM

0 I

)

π = (πU, πM) π′ ∝ (0, πM)

Regular vs absorbing walk

Regular walk P Absorbing walk P′

U M U M

P =

(
PUU PUM
PMU PMM

)
P′ =

(
PUU PUM

0 I

)
π = (πU, πM) π′ ∝ (0, πM)

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

Classical search via random walk

First. . .
Forget P, we will use P′ instead!

Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M.
If yes, output x and exit

3. Update x according to
P′ and go back to step 2

U M

P′

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)

Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

“Adiabatic” classical search

Semi-absorbing walk

I P(s) := (1− s)P + sP′ for s ∈ [0, 1]
I Stationary distribution: π(s) ∝

(
(1− s)πU, πM

)
Algorithm

1. Pick a random x ∼ π

2. Apply P(s) several
times while changing
s from 0 to 1

3. Check if x is marked

U M

P(s)

Key observation
π(s) changes continuously from π to π′ as s ranges from 0 to 1

Quantum algorithm

Adiabatic version [KOR10]

Construction
I Use the method of Somma

and Ortiz [SO10] to convert
P(s) into a Hamiltonian H(s)

Algorithm

1. Prepare |π〉, the quantum
state corresponding to π

2. Evolve by H(s) while
interpolating s from 0 to 1

Theorem
Let P be an ergodic and reversible Markov chain and assume
the adiabaticity requirement holds H(s). Then the adiabatic
search algorithm finds a marked vertex with probability at least
1− ε2 in time T = π

2ε

√
HT+

Circuit version [KMOR10]

Construction
I Use Szegedy’s method [Sze04a] to define a unitary W(P(s))
I W(P(s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of

W(P(s))

Algorithm

1. Prepare |π〉
2. Project onto |π(s∗)〉 = |πU〉+|πM〉√

2

3. Measure current vertex

Theorem
If the values of pM and HT+ are known, then a quantum
algorithm can find a marked vertex in O

(√
HT+

)
steps

Spatial search on G = (V, E)

I State space: vertex register × workspace
V V ∪ {0̄}

I Locality-respecting move:

SHIFT |x, y〉 :=

{
|y, x〉 if (x, y) ∈ E
|x, y〉 otherwise

I Workspace update:

V(P)|x〉|0̄〉 := |x〉 ∑
y∈X

√
Pxy|y〉

I Szegedy’s walk operator:

W(P) := ref1 · ref2

ref1 := V(P)† SHIFT V(P)
ref2 := I⊗ (2|0̄〉〈0̄| − I)

Spatial search on G = (V, E)

I State space: vertex register × workspace
V V ∪ {0̄}

I Locality-respecting move:

SHIFT |x, y〉 :=

{
|y, x〉 if (x, y) ∈ E
|x, y〉 otherwise

I Workspace update:

V(P)|x〉|0̄〉 := |x〉 ∑
y∈X

√
Pxy|y〉

I Szegedy’s walk operator:

W(P) := ref1 · ref2

ref1 := V(P)† SHIFT V(P)
ref2 := I⊗ (2|0̄〉〈0̄| − I)

Spatial search on G = (V, E)

I State space: vertex register × workspace
V V ∪ {0̄}

I Locality-respecting move:

SHIFT |x, y〉 :=

{
|y, x〉 if (x, y) ∈ E
|x, y〉 otherwise

I Workspace update:

V(P)|x〉|0̄〉 := |x〉 ∑
y∈X

√
Pxy|y〉

I Szegedy’s walk operator:

W(P) := ref1 · ref2

ref1 := V(P)† SHIFT V(P)
ref2 := I⊗ (2|0̄〉〈0̄| − I)

Spatial search on G = (V, E)

I State space: vertex register × workspace
V V ∪ {0̄}

I Locality-respecting move:

SHIFT |x, y〉 :=

{
|y, x〉 if (x, y) ∈ E
|x, y〉 otherwise

I Workspace update:

V(P)|x〉|0̄〉 := |x〉 ∑
y∈X

√
Pxy|y〉

I Szegedy’s walk operator:

W(P) := ref1 · ref2

ref1 := V(P)† SHIFT V(P)
ref2 := I⊗ (2|0̄〉〈0̄| − I)

Hitting times

Operational definition
Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M. If yes, output x and exit
3. Update x according to P′ and go back to step 2

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

Operational definition
Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M. If yes, output x and exit
3. Update x according to P′ and go back to step 2

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

Operational definition
Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M. If yes, output x and exit
3. Update x according to P′ and go back to step 2

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

Operational definition
Algorithm (BASICWALK)

1. Pick a random x ∼ π

2. Check if x ∈ M. If yes, output x and exit
3. Update x according to P′ and go back to step 2

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

Ingredients

Umarked superposition

|U〉 :=
1
√

pU
∑

x∈U

√
πx|x〉

Discriminant matrix
I P(s) is not symmetric. Instead, consider

D(s) :=
√

P(s) ◦ P(s)T

I P(s) and D(s) are similar:

D(s) = diag
(√

π(s)
)

P(s) diag
(√

π(s)
)−1

Ingredients

Umarked superposition

|U〉 :=
1
√

pU
∑

x∈U

√
πx|x〉

Discriminant matrix
I P(s) is not symmetric. Instead, consider

D(s) :=
√

P(s) ◦ P(s)T

I P(s) and D(s) are similar:

D(s) = diag
(√

π(s)
)

P(s) diag
(√

π(s)
)−1

Eigenvalues and eigenvectors

I Spectral decomposition:

D(s) =
n

∑
k=1

λk(s)|vk(s)〉〈vk(s)|

0 ≤ λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s) = 1

I Multiplicity of eigenvalue 1:

1 when s ∈ [0, 1)
m when s = 1

I Overlap with |U〉:

〈vk(1)|U〉 = 0 when k > n−m

Eigenvalues and eigenvectors

I Spectral decomposition:

D(s) =
n

∑
k=1

λk(s)|vk(s)〉〈vk(s)|

0 ≤ λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s) = 1

I Multiplicity of eigenvalue 1:

1 when s ∈ [0, 1)
m when s = 1

I Overlap with |U〉:

〈vk(1)|U〉 = 0 when k > n−m

Eigenvalues and eigenvectors

I Spectral decomposition:

D(s) =
n

∑
k=1

λk(s)|vk(s)〉〈vk(s)|

0 ≤ λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s) = 1

I Multiplicity of eigenvalue 1:

1 when s ∈ [0, 1)
m when s = 1

I Overlap with |U〉:

〈vk(1)|U〉 = 0 when k > n−m

Operational definition (continued)

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

=
∞

∑
t=0

n

∑
k=1

λk(1)t|〈vk(1)|U〉|2

=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

Operational definition (continued)

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

=
∞

∑
t=0

n

∑
k=1

λk(1)t|〈vk(1)|U〉|2

=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

Operational definition (continued)

Hitting time
HT = the expected # of steps of P′ to reach any x ∈ M

HT :=
∞

∑
l=1

l · Pr[need exactly l steps]

=
∞

∑
t=0

Pr[need more than t steps]

=
∞

∑
t=0
〈U|D(1)t|U〉

=
∞

∑
t=0

n

∑
k=1

λk(1)t|〈vk(1)|U〉|2

=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

Hitting times

I Hitting time:

HT :=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

I Interpolated HT:

HT(s) :=
n−1

∑
k=1

|〈vk(s)|U〉|2

1− λk(s)

I Extended HT:
HT+ := lim

s→1
HT(s)

Question

What is lim
s→1

|〈vk(s)|U〉|2

1− λk(s)
for k > n−m?

Hitting times

I Hitting time:

HT :=
n−m

∑
k=1

|〈vk(1)|U〉|2

1− λk(1)

I Interpolated HT:

HT(s) :=
n−1

∑
k=1

|〈vk(s)|U〉|2

1− λk(s)

I Extended HT:
HT+ := lim

s→1
HT(s)

Question

What is lim
s→1

|〈vk(s)|U〉|2

1− λk(s)
for k > n−m?

Example

1 2 3

3/4 1/2 3/4

1/4 1/4

P =
1
4

3 1 0
1 2 1
0 1 3

 M = {2, 3}

HT = 4 HT(s) =
20

(3− s)2 HT+ = 5

Main technical result

I Differential equation for HT(s):

d
ds

HT(s) =
2pU

1− spU
HT(s)

I Solution:

HT(s) =
(

1− pU

1− spU

)2

HT+

s

HT(s) pM = 1.0

pM = 0.2

pM = 0.4

pM = 0.6

pM = 0.8

0 1
0

HT+

Explicit formulas

HT = 〈Ũ|(I−DUU)
−1|Ũ〉

HT+ = 〈Ũ|(I−DUU − S)−1|Ũ〉

where

S := DUM

[
(I−DMM)−1 − (I−DMM)−1|M̃〉〈M̃|(I−DMM)−1

〈M̃|(I−DMM)−1|M̃〉

]
DMU

D :=
(

DUU DUM
DMU DMM

)
|Ũ〉 :=

√
πU

pU
|M̃〉 :=

√
πM

pM

Important points

I HT depends only on transitions between unmarked states
whereas HT+ does not!

I We end up sampling a specific distribution over marked
states—this might be harder than merely finding one!

Explicit formulas

HT = 〈Ũ|(I−DUU)
−1|Ũ〉

HT+ = 〈Ũ|(I−DUU − S)−1|Ũ〉

where

S := DUM

[
(I−DMM)−1 − (I−DMM)−1|M̃〉〈M̃|(I−DMM)−1

〈M̃|(I−DMM)−1|M̃〉

]
DMU

D :=
(

DUU DUM
DMU DMM

)
|Ũ〉 :=

√
πU

pU
|M̃〉 :=

√
πM

pM

Important points

I HT depends only on transitions between unmarked states
whereas HT+ does not!

I We end up sampling a specific distribution over marked
states—this might be harder than merely finding one!

Explicit formulas

HT = 〈Ũ|(I−DUU)
−1|Ũ〉

HT+ = 〈Ũ|(I−DUU − S)−1|Ũ〉

where

S := DUM

[
(I−DMM)−1 − (I−DMM)−1|M̃〉〈M̃|(I−DMM)−1

〈M̃|(I−DMM)−1|M̃〉

]
DMU

D :=
(

DUU DUM
DMU DMM

)
|Ũ〉 :=

√
πU

pU
|M̃〉 :=

√
πM

pM

Important points

I HT depends only on transitions between unmarked states
whereas HT+ does not!

I We end up sampling a specific distribution over marked
states—this might be harder than merely finding one!

Conclusions
Results

I Quadratic quantum speed-up of HT for reversible, ergodic
Markov chains with 1 marked state

I For multiple marked states, quadratic speedup over HT+

Questions
I What is the meaning of HT(s) and HT+?
I Can we get

√
HT for multiple marked elements?

Related talks
Mon 16:30 Ambanis Quantum search and extended hitting time
Tue 16:30 Montanaro Quantum speedup of backtracking
Wed 10:15 Belovs Quantum walks and electric networks

Thank you!

Conclusions
Results

I Quadratic quantum speed-up of HT for reversible, ergodic
Markov chains with 1 marked state

I For multiple marked states, quadratic speedup over HT+

Questions
I What is the meaning of HT(s) and HT+?
I Can we get

√
HT for multiple marked elements?

Related talks
Mon 16:30 Ambanis Quantum search and extended hitting time
Tue 16:30 Montanaro Quantum speedup of backtracking
Wed 10:15 Belovs Quantum walks and electric networks

Thank you!

Conclusions
Results

I Quadratic quantum speed-up of HT for reversible, ergodic
Markov chains with 1 marked state

I For multiple marked states, quadratic speedup over HT+

Questions
I What is the meaning of HT(s) and HT+?
I Can we get

√
HT for multiple marked elements?

Related talks
Mon 16:30 Ambanis Quantum search and extended hitting time
Tue 16:30 Montanaro Quantum speedup of backtracking
Wed 10:15 Belovs Quantum walks and electric networks

Thank you!

Conclusions
Results

I Quadratic quantum speed-up of HT for reversible, ergodic
Markov chains with 1 marked state

I For multiple marked states, quadratic speedup over HT+

Questions
I What is the meaning of HT(s) and HT+?
I Can we get

√
HT for multiple marked elements?

Related talks
Mon 16:30 Ambanis Quantum search and extended hitting time
Tue 16:30 Montanaro Quantum speedup of backtracking
Wed 10:15 Belovs Quantum walks and electric networks

Thank you!

	Problem and background
	Main result
	Classical intuition
	Quantum algorithm
	Hitting times

