Quantum walks can find a marked element on any graph

Māris Ozols

University of Cambridge
arXiv:1002.2419v2

Hari Krovi Frédéric Magniez Jérémie Roland

Raytheon BBN Technologies
CNRS, LIAFA, Univ Paris Diderot
QuIC, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles

Outline

1. Problem and background
2. Main result
3. Classical intuition
4. Quantum algorithm
5. Hitting times

Problem and background

Problem: spatial search on a graph

Setup

- Directed graph on $X=U \cup M$
- Unknown marked vertices M
- Edges representing legal moves

Problem: spatial search on a graph

Setup

- Directed graph on $X=U \cup M$
- Unknown marked vertices M
- Edges representing legal moves

Goal

- Find any marked vertex
- Complexity = the number of steps

Approach: random walk

Setup

- Stochastic matrix $P=\left(P_{x y}\right)$
- Restriction: $P_{x y}=0$ if (x, y) is not an edge

Quantum walks

Useful early applications

- Element distinctness [Amb04]
- Triangle finding [MSS05]
- Verification of matrix products [BŠ06]
- Testing group commutativity [MN07]

Quantum walks

Useful early applications

- Element distinctness [Amb04]
- Triangle finding [MSS05]
- Verification of matrix products [BŠ06]
- Testing group commutativity [MN07]

Random walk \rightarrow quantum walk

- A general "quantization" technique [Sze04a]
- Walk on a complete graph \rightarrow Grover's algorithm [Gro96]
- Goal: a quadratic quantum speedup for finding a marked vertex compared to any random walk

Finding with quadratic speedup

Previous results

- Quadratic speedup for detecting if marked vertices are present [Sze04a]
- Can find, but no quadratic speedup in general [MNRS07]
- Quadratic speedup for state-transitive Markov chains with a unique marked vertex [Tul08, MNRS12]

Finding with quadratic speedup

Previous results

- Quadratic speedup for detecting if marked vertices are present [Sze04a]
- Can find, but no quadratic speedup in general [MNRS07]
- Quadratic speedup for state-transitive Markov chains with a unique marked vertex [Tul08, MNRS12]

Our contribution

- Quadratic speedup for any Markov chain with a unique marked vertex [KOR10, KMOR10]
- Note: Markov chain has to be ergodic and reversible

Main result

The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and $M \subseteq X$ be a set of marked elements. Then a quantum algorithm can find a marked element in $O\left(\sqrt{\mathrm{HT}^{+}}\right)$steps where HT^{+}is the "extended" hitting time of P

The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X, and $M \subseteq X$ be a set of marked elements. Then a quantum algorithm can find a marked element in $O\left(\sqrt{\mathrm{HT}^{+}}\right)$steps where HT^{+}is the "extended" hitting time of P

Note

- For any $M, \mathrm{HT}^{+} \geq \mathrm{HT}=$ the hitting time of P
- If $|M|=1, \mathrm{HT}^{+}=\mathrm{HT}$

The main restlt question

Theorem

Let P be a reversible, ergodic Markov chain on a set X, and $M \subseteq X$ be a set of marked elements. Then a quantum algorithm can find a marked element in $O\left(\sqrt{\mathrm{HT}^{+}}\right)$steps where HT^{+}is the "extended" hitting time of P

Note

- For any $M, \mathrm{HT}^{+} \geq \mathrm{HT}=$ the hitting time of P
- If $|M|=1, \mathrm{HT}^{+}=\mathrm{HT}$

Question
Can we find in $O(\sqrt{\mathrm{HT}})$ steps for any M ?

Classical intuition

Regular vs absorbing walk

Regular walk P

Absorbing walk P^{\prime}

Regular vs absorbing walk

Regular walk P

$$
P=\left(\begin{array}{ll}
P_{U U} & P_{U M} \\
P_{M U} & P_{M M}
\end{array}\right)
$$

Absorbing walk P^{\prime}

$$
P^{\prime}=\left(\begin{array}{cc}
P_{U U} & P_{U M} \\
0 & I
\end{array}\right)
$$

Regular vs absorbing walk

Regular walk P

$$
\begin{gathered}
P=\left(\begin{array}{ll}
P_{U U} & P_{U M} \\
P_{M U} & P_{M M}
\end{array}\right) \\
\pi=\left(\pi_{U}, \pi_{M}\right)
\end{gathered}
$$

Absorbing walk P^{\prime}

$$
P^{\prime}=\left(\begin{array}{cc}
P_{U U} & P_{U M} \\
0 & I
\end{array}\right)
$$

$$
\pi^{\prime} \propto\left(0, \pi_{M}\right)
$$

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!
Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!
Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!
Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!
Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Classical search via random walk

First...
Forget P, we will use P^{\prime} instead!

Algorithm (BasicWalk)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Hitting time

HT = the expected \# of steps of P^{\prime} to reach any $x \in M$

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

"Adiabatic" classical search

Semi-absorbing walk

- $P(s):=(1-s) P+s P^{\prime}$ for $s \in[0,1]$
- Stationary distribution: $\pi(s) \propto\left((1-s) \pi_{U}, \pi_{M}\right)$

Algorithm

1. Pick a random $x \sim \pi$
2. Apply $P(s)$ several times while changing s from 0 to 1
3. Check if x is marked

Key observation
$\pi(s)$ changes continuously from π to π^{\prime} as s ranges from 0 to 1

Quantum algorithm

Adiabatic version [KоR10]

Construction

- Use the method of Somma and Ortiz [SO10] to convert $P(s)$ into a Hamiltonian $H(s)$

Algorithm

1. Prepare $|\pi\rangle$, the quantum state corresponding to π

2. Evolve by $H(s)$ while interpolating s from 0 to 1

Theorem
Let P be an ergodic and reversible Markov chain and assume the adiabaticity requirement holds $H(s)$. Then the adiabatic search algorithm finds a marked vertex with probability at least $1-\varepsilon^{2}$ in time $T=\frac{\pi}{2 \varepsilon} \sqrt{\mathrm{HT}^{+}}$

Circuit version [KMOR10]

Construction

- Use Szegedy's method [Sze04a] to define a unitary $W(P(s))$
- $W(P(s))$ has a unique 1-eigenvector $|\pi(s)\rangle$
- Use phase estimation to measure in the eigenbasis of $W(P(s))$

Algorithm

1. Prepare $|\pi\rangle$
2. Project onto $\left|\pi\left(s^{*}\right)\right\rangle=\frac{|\pi u\rangle+\left|\pi_{M}\right\rangle}{\sqrt{2}}$
3. Measure current vertex

Theorem
If the values of p_{M} and HT^{+}are known, then a quantum algorithm can find a marked vertex in $O\left(\sqrt{\mathrm{HT}^{+}}\right)$steps

Spatial search on $G=(V, E)$

- State space: vertex register \times workspace V
$V \cup\{\overline{0}\}$

Spatial search on $G=(V, E)$

- State space: vertex register \times workspace

$$
V \quad V \cup\{\overline{0}\}
$$

- Locality-respecting move:

$$
\text { SHIFT }|x, y\rangle:= \begin{cases}|y, x\rangle & \text { if }(x, y) \in E \\ |x, y\rangle & \text { otherwise }\end{cases}
$$

Spatial search on $G=(V, E)$

- State space: vertex register \times workspace

$$
V \quad V \cup\{\overline{0}\}
$$

- Locality-respecting move:

$$
\text { SHIFT }|x, y\rangle:= \begin{cases}|y, x\rangle & \text { if }(x, y) \in E \\ |x, y\rangle & \text { otherwise }\end{cases}
$$

- Workspace update:

$$
V(P)|x\rangle|\overline{0}\rangle:=|x\rangle \sum_{y \in X} \sqrt{P_{x y}}|y\rangle
$$

Spatial search on $G=(V, E)$

- State space: vertex register \times workspace

$$
V \quad V \cup\{\overline{0}\}
$$

- Locality-respecting move:

$$
\text { SHIFT }|x, y\rangle:= \begin{cases}|y, x\rangle & \text { if }(x, y) \in E \\ |x, y\rangle & \text { otherwise }\end{cases}
$$

- Workspace update:

$$
V(P)|x\rangle|\overline{0}\rangle:=|x\rangle \sum_{y \in X} \sqrt{P_{x y}}|y\rangle
$$

- Szegedy's walk operator:

$$
\begin{aligned}
W(P) & :=\operatorname{ref}_{1} \cdot \operatorname{ref}_{2} \\
\operatorname{ref}_{1} & :=V(P)^{\dagger} \operatorname{SHIFT} V(P) \\
\operatorname{ref}_{2} & :=I \otimes(2|\overline{0}\rangle\langle\overline{0}|-I)
\end{aligned}
$$

Hitting times

Operational definition

Algorithm (BasicWalk)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

Operational definition

Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

$$
\mathrm{HT}:=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }]
$$

Operational definition

Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

$$
\begin{aligned}
\mathrm{HT} & :=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }] \\
& =\sum_{t=0}^{\infty} \operatorname{Pr}[\text { need more than } t \text { steps }]
\end{aligned}
$$

Operational definition

Algorithm (BASICWALK)

1. Pick a random $x \sim \pi$
2. Check if $x \in M$. If yes, output x and exit
3. Update x according to P^{\prime} and go back to step 2

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

$$
\begin{aligned}
\mathrm{HT} & :=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }] \\
& =\sum_{t=0}^{\infty} \operatorname{Pr}[\text { need more than } t \text { steps }] \\
& =\sum_{t=0}^{\infty}\langle U| D(1)^{t}|U\rangle
\end{aligned}
$$

Ingredients

Umarked superposition

$$
|U\rangle:=\frac{1}{\sqrt{p_{U}}} \sum_{x \in U} \sqrt{\pi_{x}}|x\rangle
$$

Ingredients

Umarked superposition

$$
|U\rangle:=\frac{1}{\sqrt{p_{U}}} \sum_{x \in U} \sqrt{\pi_{x}}|x\rangle
$$

Discriminant matrix

- $P(s)$ is not symmetric. Instead, consider

$$
D(s):=\sqrt{P(s) \circ P(s)^{\top}}
$$

- $P(s)$ and $D(s)$ are similar:

$$
D(s)=\operatorname{diag}(\sqrt{\pi(s)}) P(s) \operatorname{diag}(\sqrt{\pi(s)})^{-1}
$$

Eigenvalues and eigenvectors

- Spectral decomposition:

$$
\begin{gathered}
D(s)=\sum_{k=1}^{n} \lambda_{k}(s)\left|v_{k}(s)\right\rangle\left\langle v_{k}(s)\right| \\
0 \leq \lambda_{1}(s) \leq \lambda_{2}(s) \leq \cdots \leq \lambda_{n}(s)=1
\end{gathered}
$$

Eigenvalues and eigenvectors

- Spectral decomposition:

$$
\begin{gathered}
D(s)=\sum_{k=1}^{n} \lambda_{k}(s)\left|v_{k}(s)\right\rangle\left\langle v_{k}(s)\right| \\
0 \leq \lambda_{1}(s) \leq \lambda_{2}(s) \leq \cdots \leq \lambda_{n}(s)=1
\end{gathered}
$$

- Multiplicity of eigenvalue 1 :

1 when $s \in[0,1)$
m when $s=1$

Eigenvalues and eigenvectors

- Spectral decomposition:

$$
\begin{gathered}
D(s)=\sum_{k=1}^{n} \lambda_{k}(s)\left|v_{k}(s)\right\rangle\left\langle v_{k}(s)\right| \\
0 \leq \lambda_{1}(s) \leq \lambda_{2}(s) \leq \cdots \leq \lambda_{n}(s)=1
\end{gathered}
$$

- Multiplicity of eigenvalue 1 :

$$
\begin{array}{rll}
1 & \text { when } & s \in[0,1) \\
m & \text { when } & s=1
\end{array}
$$

- Overlap with $|U\rangle$:

$$
\left\langle v_{k}(1) \mid U\right\rangle=0 \quad \text { when } \quad k>n-m
$$

Operational definition (continued)

Hitting time
HT = the expected \# of steps of P^{\prime} to reach any $x \in M$

$$
\begin{aligned}
\text { HT } & :=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }] \\
& =\sum_{t=0}^{\infty} \operatorname{Pr}[\text { need } \text { more than } t \text { steps }] \\
& =\sum_{t=0}^{\infty}\langle U| D(1)^{t}|U\rangle
\end{aligned}
$$

Operational definition (continued)

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

$$
\begin{aligned}
\mathrm{HT} & :=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }] \\
& =\sum_{t=0}^{\infty} \operatorname{Pr}[\text { need more than } t \text { steps }] \\
& =\sum_{t=0}^{\infty}\langle U| D(1)^{t}|U\rangle \\
& =\sum_{t=0}^{\infty} \sum_{k=1}^{n} \lambda_{k}(1)^{t}\left|\left\langle v_{k}(1) \mid U\right\rangle\right|^{2}
\end{aligned}
$$

Operational definition (continued)

Hitting time
HT $=$ the expected $\#$ of steps of P^{\prime} to reach any $x \in M$

$$
\begin{aligned}
\mathrm{HT} & :=\sum_{l=1}^{\infty} l \cdot \operatorname{Pr}[\text { need exactly } l \text { steps }] \\
& =\sum_{t=0}^{\infty} \operatorname{Pr}[\text { need more than } t \text { steps }] \\
& =\sum_{t=0}^{\infty}\langle U| D(1)^{t}|U\rangle \\
& =\sum_{t=0}^{\infty} \sum_{k=1}^{n} \lambda_{k}(1)^{t}\left|\left\langle v_{k}(1) \mid U\right\rangle\right|^{2} \\
& =\sum_{k=1}^{n-m} \frac{\left|\left\langle v_{k}(1) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(1)}
\end{aligned}
$$

Hitting times

- Hitting time:

$$
\mathrm{HT}:=\sum_{k=1}^{n-m} \frac{\left|\left\langle v_{k}(1) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(1)}
$$

- Interpolated HT:

$$
\mathrm{HT}(s):=\sum_{k=1}^{n-1} \frac{\left|\left\langle v_{k}(s) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(s)}
$$

- Extended HT:

$$
\mathrm{HT}^{+}:=\lim _{s \rightarrow 1} \mathrm{HT}(s)
$$

Hitting times

- Hitting time:

$$
\mathrm{HT}:=\sum_{k=1}^{n-m} \frac{\left|\left\langle v_{k}(1) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(1)}
$$

- Interpolated HT:

$$
\mathrm{HT}(s):=\sum_{k=1}^{n-1} \frac{\left|\left\langle v_{k}(s) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(s)}
$$

- Extended HT:

$$
\mathrm{HT}^{+}:=\lim _{s \rightarrow 1} \mathrm{HT}(s)
$$

Question

$$
\text { What is } \lim _{s \rightarrow 1} \frac{\left|\left\langle v_{k}(s) \mid U\right\rangle\right|^{2}}{1-\lambda_{k}(s)} \quad \text { for } \quad k>n-m ?
$$

Example

$$
P=\frac{1}{4}\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right) \quad M=\{2,3\}
$$

$\mathrm{HT}=4$

$$
\mathrm{HT}(s)=\frac{20}{(3-s)^{2}}
$$

$\mathrm{HT}^{+}=5$

Main technical result

- Differential equation for HT(s):

$$
\frac{d}{d s} \mathrm{HT}(s)=\frac{2 p_{U}}{1-s p_{U}} \mathrm{HT}(s)
$$

- Solution:

$$
\mathrm{HT}(s)=\left(\frac{1-p_{U}}{1-s p_{U}}\right)^{2} \mathrm{HT}^{+}
$$

Explicit formulas

$$
\begin{aligned}
\mathrm{HT} & =\langle\tilde{U}|\left(I-D_{u u}\right)^{-1}|\tilde{U}\rangle \\
\mathrm{HT}^{+} & =\langle\tilde{U}|\left(I-D_{u u}-S\right)^{-1}|\tilde{U}\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
S & :=D_{U M}\left[\left(I-D_{M M}\right)^{-1}-\frac{\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}}{\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle}\right] D_{M U} \\
D & :=\left(\begin{array}{cc}
D_{U U} & D_{U M} \\
D_{M U} & D_{M M}
\end{array}\right) \quad|\tilde{U}\rangle:=\sqrt{\frac{\pi_{U}}{p_{U}}} \quad|\tilde{M}\rangle:=\sqrt{\frac{\pi_{M}}{p_{M}}}
\end{aligned}
$$

Explicit formulas

$$
\begin{aligned}
\mathrm{HT} & =\langle\tilde{U}|\left(I-D_{u u}\right)^{-1}|\tilde{U}\rangle \\
\mathrm{HT}^{+} & =\langle\tilde{U}|\left(I-D_{u u}-S\right)^{-1}|\tilde{U}\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
S & :=D_{U M}\left[\left(I-D_{M M}\right)^{-1}-\frac{\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}}{\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle}\right] D_{M U} \\
D & :=\left(\begin{array}{cc}
D_{U U} & D_{U M} \\
D_{M U} & D_{M M}
\end{array}\right) \quad|\tilde{U}\rangle:=\sqrt{\frac{\pi_{U}}{p_{U}}} \quad|\tilde{M}\rangle:=\sqrt{\frac{\pi_{M}}{p_{M}}}
\end{aligned}
$$

Important points

- HT depends only on transitions between unmarked states whereas HT^{+}does not!

Explicit formulas

$$
\begin{aligned}
\mathrm{HT} & =\langle\tilde{U}|\left(I-D_{u u}\right)^{-1}|\tilde{U}\rangle \\
\mathrm{HT}^{+} & =\langle\tilde{U}|\left(I-D_{u u}-S\right)^{-1}|\tilde{U}\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
S & :=D_{U M}\left[\left(I-D_{M M}\right)^{-1}-\frac{\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}}{\langle\tilde{M}|\left(I-D_{M M}\right)^{-1}|\tilde{M}\rangle}\right] D_{M U} \\
D & :=\left(\begin{array}{cc}
D_{U U} & D_{U M} \\
D_{M U} & D_{M M}
\end{array}\right) \quad|\tilde{U}\rangle:=\sqrt{\frac{\pi_{U}}{p_{U}}} \quad|\tilde{M}\rangle:=\sqrt{\frac{\pi_{M}}{p_{M}}}
\end{aligned}
$$

Important points

- HT depends only on transitions between unmarked states whereas HT^{+}does not!
- We end up sampling a specific distribution over marked states-this might be harder than merely finding one!

Conclusions

Results

- Quadratic quantum speed-up of HT for reversible, ergodic Markov chains with 1 marked state
- For multiple marked states, quadratic speedup over HT^{+}

Conclusions

Results

- Quadratic quantum speed-up of HT for reversible, ergodic Markov chains with 1 marked state
- For multiple marked states, quadratic speedup over HT^{+}

Questions

- What is the meaning of $\mathrm{HT}(s)$ and HT^{+}?
- Can we get $\sqrt{\mathrm{HT}}$ for multiple marked elements?

Conclusions

Results

- Quadratic quantum speed-up of HT for reversible, ergodic Markov chains with 1 marked state
- For multiple marked states, quadratic speedup over HT^{+}

Questions

- What is the meaning of $\mathrm{HT}(s)$ and HT^{+}?
- Can we get $\sqrt{\mathrm{HT}}$ for multiple marked elements?

Related talks

Mon	$16: 30$	Ambanis	Quantum search and extended hitting time
Tue	16:30	Montanaro	Quantum speedup of backtracking
Wed	$10: 15$	Belovs	Quantum walks and electric networks

Conclusions

Results

- Quadratic quantum speed-up of HT for reversible, ergodic Markov chains with 1 marked state
- For multiple marked states, quadratic speedup over HT^{+}

Questions

- What is the meaning of $\mathrm{HT}(s)$ and HT^{+}?
- Can we get $\sqrt{\mathrm{HT}}$ for multiple marked elements?

Related talks

Mon	$16: 30$	Ambanis	Quantum search and extended hitting time
Tue	16:30	Montanaro	Quantum speedup of backtracking
Wed	$10: 15$	Belovs	Quantum walks and electric networks

